| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pm2mpval.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pm2mpval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pm2mpval.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
| 5 |
|
pm2mpval.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 6 |
|
pm2mpval.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
| 7 |
|
pm2mpval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 8 |
|
pm2mpval.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 9 |
|
pm2mpval.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 10 |
|
pm2mpcl.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 ⟶ 𝐿 ) |
| 12 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐴 ∈ Ring ) |
| 14 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ) |
| 15 |
14
|
3expa |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ) |
| 16 |
15
|
adantrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ) |
| 17 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) |
| 18 |
17
|
3expia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑤 ∈ 𝐵 → ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) ) |
| 19 |
18
|
adantld |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) ) |
| 20 |
19
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) |
| 21 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) = ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) |
| 22 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) = ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) |
| 23 |
8 10 21 22
|
ply1coe1eq |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ∧ ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ↔ ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) ) ) |
| 24 |
23
|
bicomd |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ∧ ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) → ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ) |
| 25 |
13 16 20 24
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ) |
| 26 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑁 ∈ Fin ) |
| 27 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 28 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑢 ∈ 𝐵 ) |
| 29 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑢 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 30 |
26 27 28 29
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑢 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ 𝑢 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 32 |
31
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 33 |
32
|
fveq1d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 34 |
|
simplll |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 35 |
28
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑢 ∈ 𝐵 ) |
| 36 |
35
|
anim1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) |
| 37 |
1 2 3 4 5 6 7 8
|
pm2mpf1lem |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝑢 decompPMat 𝑛 ) ) |
| 38 |
34 36 37
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝑢 decompPMat 𝑛 ) ) |
| 39 |
33 38
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( 𝑢 decompPMat 𝑛 ) ) |
| 40 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
| 41 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑤 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 42 |
26 27 40 41
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑤 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 43 |
42
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 44 |
43
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 46 |
40
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑤 ∈ 𝐵 ) |
| 47 |
46
|
anim1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) |
| 48 |
1 2 3 4 5 6 7 8
|
pm2mpf1lem |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ) |
| 49 |
34 47 48
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ) |
| 50 |
45 49
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ) |
| 51 |
39 50
|
eqeq12d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ↔ ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ) ) |
| 52 |
2 3
|
decpmatval |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑢 decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 53 |
28 52
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑢 decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 54 |
2 3
|
decpmatval |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑤 decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 55 |
40 54
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑤 decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 56 |
53 55
|
eqeq12d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ↔ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) ) |
| 57 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 58 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 59 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
| 60 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 61 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 62 |
|
simp2 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 63 |
|
simp3 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 64 |
3
|
eleq2i |
⊢ ( 𝑢 ∈ 𝐵 ↔ 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
| 65 |
64
|
biimpi |
⊢ ( 𝑢 ∈ 𝐵 → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
| 67 |
66
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
| 68 |
67
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
| 69 |
68 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑢 ∈ 𝐵 ) |
| 70 |
2 61 3 62 63 69
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑢 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 71 |
|
simp1r |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑛 ∈ ℕ0 ) |
| 72 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) |
| 73 |
72 61 1 57
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑢 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 74 |
70 71 73
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 75 |
7 57 58 59 60 74
|
matbas2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 76 |
3
|
eleq2i |
⊢ ( 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 77 |
76
|
biimpi |
⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 78 |
77
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 79 |
78
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 80 |
79
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 81 |
80 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑤 ∈ 𝐵 ) |
| 82 |
2 61 3 62 63 81
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑤 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 83 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) |
| 84 |
83 61 1 57
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑤 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 85 |
82 71 84
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 86 |
7 57 58 59 60 85
|
matbas2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 87 |
7 58
|
eqmat |
⊢ ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ∈ ( Base ‘ 𝐴 ) ∧ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
| 88 |
75 86 87
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
| 89 |
56 88
|
bitrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
| 90 |
89
|
adantlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
| 91 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) |
| 92 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) |
| 93 |
91 92
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ↔ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
| 94 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) |
| 95 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) |
| 96 |
94 95
|
eqeq12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ↔ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) ) |
| 97 |
93 96
|
rspc2va |
⊢ ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) |
| 98 |
|
eqidd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 99 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 𝑢 𝑗 ) = ( 𝑎 𝑢 𝑏 ) ) |
| 100 |
99
|
fveq2d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) = ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ) |
| 101 |
100
|
fveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) |
| 102 |
101
|
adantl |
⊢ ( ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) |
| 103 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑎 ∈ 𝑁 ) |
| 104 |
|
simpllr |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑏 ∈ 𝑁 ) |
| 105 |
|
fvexd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ∈ V ) |
| 106 |
98 102 103 104 105
|
ovmpod |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) |
| 107 |
|
eqidd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 108 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 𝑤 𝑗 ) = ( 𝑎 𝑤 𝑏 ) ) |
| 109 |
108
|
fveq2d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) = ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ) |
| 110 |
109
|
fveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) |
| 111 |
110
|
adantl |
⊢ ( ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) |
| 112 |
|
fvexd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ∈ V ) |
| 113 |
107 111 103 104 112
|
ovmpod |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) |
| 114 |
106 113
|
eqeq12d |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ↔ ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 115 |
114
|
biimpd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 116 |
115
|
exp31 |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) |
| 117 |
116
|
com14 |
⊢ ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) |
| 118 |
97 117
|
syl |
⊢ ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) |
| 119 |
118
|
ex |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) ) |
| 120 |
119
|
com25 |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) ) |
| 121 |
120
|
pm2.43i |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) |
| 122 |
121
|
impcom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑛 ∈ ℕ0 → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) |
| 123 |
122
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 124 |
90 123
|
sylbid |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 125 |
51 124
|
sylbid |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 126 |
125
|
ralimdva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 127 |
126
|
impancom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 128 |
127
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) |
| 129 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 130 |
|
simprl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑎 ∈ 𝑁 ) |
| 131 |
|
simprr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑏 ∈ 𝑁 ) |
| 132 |
66
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
| 133 |
132
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
| 134 |
133 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑢 ∈ 𝐵 ) |
| 135 |
2 61 3 130 131 134
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑢 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
| 136 |
78
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 137 |
136 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑤 ∈ 𝐵 ) |
| 138 |
2 61 3 130 131 137
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑤 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
| 139 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) = ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) |
| 140 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) = ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) |
| 141 |
1 61 139 140
|
ply1coe1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 𝑢 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑎 𝑤 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ↔ ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) ) |
| 142 |
141
|
bicomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 𝑢 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑎 𝑤 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 143 |
129 135 138 142
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
| 144 |
128 143
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) |
| 145 |
144
|
ralrimivva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) |
| 146 |
2 3
|
eqmat |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑢 = 𝑤 ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) ) |
| 147 |
146
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → ( 𝑢 = 𝑤 ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) ) |
| 148 |
145 147
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → 𝑢 = 𝑤 ) |
| 149 |
148
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) → 𝑢 = 𝑤 ) ) |
| 150 |
25 149
|
sylbid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) |
| 151 |
150
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) |
| 152 |
|
dff13 |
⊢ ( 𝑇 : 𝐵 –1-1→ 𝐿 ↔ ( 𝑇 : 𝐵 ⟶ 𝐿 ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) ) |
| 153 |
11 151 152
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 –1-1→ 𝐿 ) |