Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpf1lem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pm2mpf1lem.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pm2mpf1lem.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pm2mpf1lem.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
5 |
|
pm2mpf1lem.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
6 |
|
pm2mpf1lem.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
7 |
|
pm2mpf1lem.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
8 |
|
pm2mpf1lem.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
10 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → 𝐴 ∈ Ring ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
14 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
15 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑈 ∈ 𝐵 ) |
16 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
17 |
1 2 3 7 12
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
18 |
14 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
19 |
18
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
20 |
1 2 3 7 13
|
decpmatfsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑈 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
21 |
20
|
ad2ant2lr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑈 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
22 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → 𝐾 ∈ ℕ0 ) |
23 |
8 9 6 5 11 12 4 13 19 21 22
|
gsummoncoe1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑈 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐾 ) = ⦋ 𝐾 / 𝑘 ⦌ ( 𝑈 decompPMat 𝑘 ) ) |
24 |
|
csbov2g |
⊢ ( 𝐾 ∈ ℕ0 → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑈 decompPMat 𝑘 ) = ( 𝑈 decompPMat ⦋ 𝐾 / 𝑘 ⦌ 𝑘 ) ) |
25 |
24
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑈 decompPMat 𝑘 ) = ( 𝑈 decompPMat ⦋ 𝐾 / 𝑘 ⦌ 𝑘 ) ) |
26 |
|
csbvarg |
⊢ ( 𝐾 ∈ ℕ0 → ⦋ 𝐾 / 𝑘 ⦌ 𝑘 = 𝐾 ) |
27 |
26
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ⦋ 𝐾 / 𝑘 ⦌ 𝑘 = 𝐾 ) |
28 |
27
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑈 decompPMat ⦋ 𝐾 / 𝑘 ⦌ 𝑘 ) = ( 𝑈 decompPMat 𝐾 ) ) |
29 |
23 25 28
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑈 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐾 ) = ( 𝑈 decompPMat 𝐾 ) ) |