Metamath Proof Explorer


Theorem pm2mpf1lem

Description: Lemma for pm2mpf1 . (Contributed by AV, 14-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pm2mpf1lem.p 𝑃 = ( Poly1𝑅 )
pm2mpf1lem.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpf1lem.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpf1lem.m = ( ·𝑠𝑄 )
pm2mpf1lem.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpf1lem.x 𝑋 = ( var1𝐴 )
pm2mpf1lem.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpf1lem.q 𝑄 = ( Poly1𝐴 )
Assertion pm2mpf1lem ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑈 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐾 ) = ( 𝑈 decompPMat 𝐾 ) )

Proof

Step Hyp Ref Expression
1 pm2mpf1lem.p 𝑃 = ( Poly1𝑅 )
2 pm2mpf1lem.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpf1lem.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpf1lem.m = ( ·𝑠𝑄 )
5 pm2mpf1lem.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpf1lem.x 𝑋 = ( var1𝐴 )
7 pm2mpf1lem.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpf1lem.q 𝑄 = ( Poly1𝐴 )
9 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
10 7 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
11 10 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → 𝐴 ∈ Ring )
12 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
13 eqid ( 0g𝐴 ) = ( 0g𝐴 )
14 simpllr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring )
15 simplrl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑈𝐵 )
16 simpr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
17 1 2 3 7 12 decpmatcl ( ( 𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0 ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
18 14 15 16 17 syl3anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
19 18 ralrimiva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
20 1 2 3 7 13 decpmatfsupp ( ( 𝑅 ∈ Ring ∧ 𝑈𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑈 decompPMat 𝑘 ) ) finSupp ( 0g𝐴 ) )
21 20 ad2ant2lr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑈 decompPMat 𝑘 ) ) finSupp ( 0g𝐴 ) )
22 simprr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → 𝐾 ∈ ℕ0 )
23 8 9 6 5 11 12 4 13 19 21 22 gsummoncoe1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑈 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐾 ) = 𝐾 / 𝑘 ( 𝑈 decompPMat 𝑘 ) )
24 csbov2g ( 𝐾 ∈ ℕ0 𝐾 / 𝑘 ( 𝑈 decompPMat 𝑘 ) = ( 𝑈 decompPMat 𝐾 / 𝑘 𝑘 ) )
25 24 ad2antll ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → 𝐾 / 𝑘 ( 𝑈 decompPMat 𝑘 ) = ( 𝑈 decompPMat 𝐾 / 𝑘 𝑘 ) )
26 csbvarg ( 𝐾 ∈ ℕ0 𝐾 / 𝑘 𝑘 = 𝐾 )
27 26 ad2antll ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → 𝐾 / 𝑘 𝑘 = 𝐾 )
28 27 oveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → ( 𝑈 decompPMat 𝐾 / 𝑘 𝑘 ) = ( 𝑈 decompPMat 𝐾 ) )
29 23 25 28 3eqtrd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈𝐵𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑈 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐾 ) = ( 𝑈 decompPMat 𝐾 ) )