Metamath Proof Explorer


Theorem pm2mpf1o

Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019)

Ref Expression
Hypotheses pm2mpfo.p 𝑃 = ( Poly1𝑅 )
pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpfo.m = ( ·𝑠𝑄 )
pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpfo.x 𝑋 = ( var1𝐴 )
pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpfo.q 𝑄 = ( Poly1𝐴 )
pm2mpfo.l 𝐿 = ( Base ‘ 𝑄 )
pm2mpfo.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
Assertion pm2mpf1o ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵1-1-onto𝐿 )

Proof

Step Hyp Ref Expression
1 pm2mpfo.p 𝑃 = ( Poly1𝑅 )
2 pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpfo.m = ( ·𝑠𝑄 )
5 pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpfo.x 𝑋 = ( var1𝐴 )
7 pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpfo.q 𝑄 = ( Poly1𝐴 )
9 pm2mpfo.l 𝐿 = ( Base ‘ 𝑄 )
10 pm2mpfo.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
11 1 2 3 4 5 6 7 8 10 9 pm2mpf1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵1-1𝐿 )
12 1 2 3 4 5 6 7 8 9 10 pm2mpfo ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵onto𝐿 )
13 df-f1o ( 𝑇 : 𝐵1-1-onto𝐿 ↔ ( 𝑇 : 𝐵1-1𝐿𝑇 : 𝐵onto𝐿 ) )
14 11 12 13 sylanbrc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵1-1-onto𝐿 )