| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pm2mpfo.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pm2mpfo.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pm2mpfo.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pm2mpfo.m | 
							⊢  ∗   =  (  ·𝑠  ‘ 𝑄 )  | 
						
						
							| 5 | 
							
								
							 | 
							pm2mpfo.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pm2mpfo.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							pm2mpfo.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							pm2mpfo.q | 
							⊢ 𝑄  =  ( Poly1 ‘ 𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							pm2mpfo.l | 
							⊢ 𝐿  =  ( Base ‘ 𝑄 )  | 
						
						
							| 10 | 
							
								
							 | 
							pm2mpfo.t | 
							⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 10 9
							 | 
							pm2mpf1 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 –1-1→ 𝐿 )  | 
						
						
							| 12 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							pm2mpfo | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 –onto→ 𝐿 )  | 
						
						
							| 13 | 
							
								
							 | 
							df-f1o | 
							⊢ ( 𝑇 : 𝐵 –1-1-onto→ 𝐿  ↔  ( 𝑇 : 𝐵 –1-1→ 𝐿  ∧  𝑇 : 𝐵 –onto→ 𝐿 ) )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							sylanbrc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 –1-1-onto→ 𝐿 )  |