Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2mpfo.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
pm2mpfo.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | ||
pm2mpfo.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
pm2mpfo.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) | ||
pm2mpfo.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | ||
pm2mpfo.x | ⊢ 𝑋 = ( var1 ‘ 𝐴 ) | ||
pm2mpfo.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
pm2mpfo.q | ⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) | ||
pm2mpfo.l | ⊢ 𝐿 = ( Base ‘ 𝑄 ) | ||
pm2mpfo.t | ⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) | ||
Assertion | pm2mpf1o | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 –1-1-onto→ 𝐿 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2mpfo.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
2 | pm2mpfo.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | |
3 | pm2mpfo.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
4 | pm2mpfo.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) | |
5 | pm2mpfo.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | |
6 | pm2mpfo.x | ⊢ 𝑋 = ( var1 ‘ 𝐴 ) | |
7 | pm2mpfo.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
8 | pm2mpfo.q | ⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) | |
9 | pm2mpfo.l | ⊢ 𝐿 = ( Base ‘ 𝑄 ) | |
10 | pm2mpfo.t | ⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) | |
11 | 1 2 3 4 5 6 7 8 10 9 | pm2mpf1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 –1-1→ 𝐿 ) |
12 | 1 2 3 4 5 6 7 8 9 10 | pm2mpfo | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 –onto→ 𝐿 ) |
13 | df-f1o | ⊢ ( 𝑇 : 𝐵 –1-1-onto→ 𝐿 ↔ ( 𝑇 : 𝐵 –1-1→ 𝐿 ∧ 𝑇 : 𝐵 –onto→ 𝐿 ) ) | |
14 | 11 12 13 | sylanbrc | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 –1-1-onto→ 𝐿 ) |