Metamath Proof Explorer


Theorem pm2mpfval

Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p 𝑃 = ( Poly1𝑅 )
pm2mpval.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpval.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpval.m = ( ·𝑠𝑄 )
pm2mpval.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpval.x 𝑋 = ( var1𝐴 )
pm2mpval.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpval.q 𝑄 = ( Poly1𝐴 )
pm2mpval.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
Assertion pm2mpfval ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵 ) → ( 𝑇𝑀 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 pm2mpval.p 𝑃 = ( Poly1𝑅 )
2 pm2mpval.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpval.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpval.m = ( ·𝑠𝑄 )
5 pm2mpval.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpval.x 𝑋 = ( var1𝐴 )
7 pm2mpval.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpval.q 𝑄 = ( Poly1𝐴 )
9 pm2mpval.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
10 1 2 3 4 5 6 7 8 9 pm2mpval ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → 𝑇 = ( 𝑚𝐵 ↦ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) )
11 10 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵 ) → 𝑇 = ( 𝑚𝐵 ↦ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) )
12 oveq1 ( 𝑚 = 𝑀 → ( 𝑚 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝑘 ) )
13 12 oveq1d ( 𝑚 = 𝑀 → ( ( 𝑚 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) = ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) )
14 13 mpteq2dv ( 𝑚 = 𝑀 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) )
15 14 oveq2d ( 𝑚 = 𝑀 → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) )
16 15 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵 ) ∧ 𝑚 = 𝑀 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) )
17 simp3 ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵 ) → 𝑀𝐵 )
18 ovexd ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ∈ V )
19 11 16 17 18 fvmptd ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵 ) → ( 𝑇𝑀 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) )