Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pm2mpval.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pm2mpval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pm2mpval.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
5 |
|
pm2mpval.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
6 |
|
pm2mpval.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
7 |
|
pm2mpval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
8 |
|
pm2mpval.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
9 |
|
pm2mpval.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
10 |
1 2 3 4 5 6 7 8 9
|
pm2mpval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑇 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) → 𝑇 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝑘 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
14 |
13
|
mpteq2dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
17 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
18 |
|
ovexd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ V ) |
19 |
11 16 17 18
|
fvmptd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |