| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpfo.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pm2mpfo.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pm2mpfo.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pm2mpfo.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
| 5 |
|
pm2mpfo.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 6 |
|
pm2mpfo.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
| 7 |
|
pm2mpfo.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 8 |
|
pm2mpfo.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 9 |
|
pm2mpfo.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
| 10 |
|
pm2mpfo.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
| 12 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
| 13 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
| 14 |
|
ringgrp |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ Grp ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Grp ) |
| 16 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 17 |
8
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
| 19 |
|
ringgrp |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Grp ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Grp ) |
| 21 |
1 2 3 4 5 6 7 8 10 9
|
pm2mpf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 ⟶ 𝐿 ) |
| 22 |
|
ringmnd |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ Mnd ) |
| 23 |
13 22
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Mnd ) |
| 24 |
23
|
anim1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐶 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) |
| 25 |
|
3anass |
⊢ ( ( 𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ↔ ( 𝐶 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) |
| 27 |
3 11
|
mndcl |
⊢ ( ( 𝐶 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) ∈ 𝐵 ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) ∈ 𝐵 ) |
| 29 |
2 3
|
decpmatval |
⊢ ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 30 |
28 29
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 31 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
| 32 |
|
fvexd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ∈ V ) |
| 33 |
|
fvexd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ∈ V ) |
| 34 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 35 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 36 |
31 31 32 33 34 35
|
offval22 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 37 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 38 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 39 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 40 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
| 41 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
| 42 |
3
|
eleq2i |
⊢ ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ( Base ‘ 𝐶 ) ) |
| 43 |
42
|
biimpi |
⊢ ( 𝑎 ∈ 𝐵 → 𝑎 ∈ ( Base ‘ 𝐶 ) ) |
| 44 |
43
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) ) |
| 45 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 46 |
2 45
|
matecl |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑖 𝑎 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 47 |
40 41 44 46
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 𝑎 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 48 |
47
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑎 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 49 |
48
|
adantrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑎 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑎 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 51 |
50
|
3impib |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑎 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 52 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 53 |
52
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 54 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) |
| 55 |
54 45 1 37
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑎 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 56 |
51 53 55
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 57 |
7 37 38 31 39 56
|
matbas2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 58 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
| 59 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
| 60 |
3
|
eleq2i |
⊢ ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ( Base ‘ 𝐶 ) ) |
| 61 |
60
|
biimpi |
⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ( Base ‘ 𝐶 ) ) |
| 62 |
61
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) |
| 63 |
2 45
|
matecl |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑖 𝑏 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 64 |
58 59 62 63
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 𝑏 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 65 |
64
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑏 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 66 |
65
|
adantrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑏 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑏 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 68 |
67
|
3impib |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑏 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 69 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) |
| 70 |
69 45 1 37
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑏 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 71 |
68 53 70
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 72 |
7 37 38 31 39 71
|
matbas2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 73 |
|
eqid |
⊢ ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) |
| 74 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 75 |
7 38 73 74
|
matplusg2 |
⊢ ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ∧ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ( +g ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 76 |
57 72 75
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ( +g ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 77 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) |
| 78 |
77
|
anim1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) |
| 79 |
78
|
3impb |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) |
| 80 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 81 |
2 3 11 80
|
matplusgcell |
⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) = ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) |
| 82 |
79 81
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) = ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) |
| 83 |
82
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) = ( coe1 ‘ ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) ) |
| 84 |
83
|
fveq1d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) ‘ 𝑘 ) ) |
| 85 |
39
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 86 |
1 45 80 74
|
coe1addfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑖 𝑎 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑖 𝑏 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) ‘ 𝑘 ) = ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 87 |
85 51 68 53 86
|
syl31anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) ‘ 𝑘 ) = ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 88 |
84 87
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) = ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 89 |
88
|
mpoeq3dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 90 |
36 76 89
|
3eqtr4rd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ( +g ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 91 |
8
|
ply1sca |
⊢ ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 92 |
16 91
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 93 |
92
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 94 |
93
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( +g ‘ 𝐴 ) = ( +g ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 95 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
| 96 |
2 3
|
decpmatval |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 decompPMat 𝑘 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 97 |
95 96
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 decompPMat 𝑘 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 98 |
97
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑎 decompPMat 𝑘 ) ) |
| 99 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
| 100 |
2 3
|
decpmatval |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 decompPMat 𝑘 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 101 |
99 100
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 decompPMat 𝑘 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 102 |
101
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑏 decompPMat 𝑘 ) ) |
| 103 |
94 98 102
|
oveq123d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ( +g ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) = ( ( 𝑎 decompPMat 𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏 decompPMat 𝑘 ) ) ) |
| 104 |
30 90 103
|
3eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) = ( ( 𝑎 decompPMat 𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏 decompPMat 𝑘 ) ) ) |
| 105 |
104
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( ( 𝑎 decompPMat 𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏 decompPMat 𝑘 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 106 |
8
|
ply1lmod |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ LMod ) |
| 107 |
16 106
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod ) |
| 108 |
107
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑄 ∈ LMod ) |
| 109 |
|
simpl |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
| 110 |
109
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑎 ∈ 𝐵 ) |
| 111 |
1 2 3 7 38
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 112 |
39 110 52 111
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 113 |
92
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝑄 ) = 𝐴 ) |
| 114 |
113
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( Scalar ‘ 𝑄 ) = 𝐴 ) |
| 115 |
114
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ 𝐴 ) ) |
| 116 |
112 115
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 decompPMat 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 117 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
| 118 |
117
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑏 ∈ 𝐵 ) |
| 119 |
1 2 3 7 38
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 120 |
39 118 52 119
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 121 |
120 115
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑏 decompPMat 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 122 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
| 123 |
122 9
|
mgpbas |
⊢ 𝐿 = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
| 124 |
122
|
ringmgp |
⊢ ( 𝑄 ∈ Ring → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
| 125 |
18 124
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
| 126 |
125
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
| 127 |
6 8 9
|
vr1cl |
⊢ ( 𝐴 ∈ Ring → 𝑋 ∈ 𝐿 ) |
| 128 |
16 127
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑋 ∈ 𝐿 ) |
| 129 |
128
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐿 ) |
| 130 |
123 5 126 52 129
|
mulgnn0cld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐿 ) |
| 131 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
| 132 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) |
| 133 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑄 ) ) = ( +g ‘ ( Scalar ‘ 𝑄 ) ) |
| 134 |
9 12 131 4 132 133
|
lmodvsdir |
⊢ ( ( 𝑄 ∈ LMod ∧ ( ( 𝑎 decompPMat 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ∧ ( 𝑏 decompPMat 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ∧ ( 𝑘 ↑ 𝑋 ) ∈ 𝐿 ) ) → ( ( ( 𝑎 decompPMat 𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏 decompPMat 𝑘 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 135 |
108 116 121 130 134
|
syl13anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑎 decompPMat 𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏 decompPMat 𝑘 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 136 |
105 135
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 137 |
136
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 138 |
137
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 139 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 140 |
|
ringcmn |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ CMnd ) |
| 141 |
18 140
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ CMnd ) |
| 142 |
141
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑄 ∈ CMnd ) |
| 143 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 144 |
143
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ℕ0 ∈ V ) |
| 145 |
109
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑎 ∈ 𝐵 ) ) |
| 146 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑎 ∈ 𝐵 ) ) |
| 147 |
145 146
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) ) |
| 148 |
1 2 3 4 5 6 7 8 9
|
pm2mpghmlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐿 ) |
| 149 |
147 148
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐿 ) |
| 150 |
117
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏 ∈ 𝐵 ) ) |
| 151 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏 ∈ 𝐵 ) ) |
| 152 |
150 151
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ) ) |
| 153 |
1 2 3 4 5 6 7 8 9
|
pm2mpghmlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐿 ) |
| 154 |
152 153
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐿 ) |
| 155 |
|
eqidd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 156 |
|
eqidd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 157 |
1 2 3 4 5 6 7 8
|
pm2mpghmlem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 158 |
147 157
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 159 |
1 2 3 4 5 6 7 8
|
pm2mpghmlem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 160 |
152 159
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 161 |
9 139 12 142 144 149 154 155 156 158 160
|
gsummptfsadd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ( +g ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 162 |
138 161
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ( +g ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 163 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑁 ∈ Fin ) |
| 164 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 165 |
1 2 3 4 5 6 7 8 10
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 166 |
163 164 28 165
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 167 |
1 2 3 4 5 6 7 8 10
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑎 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 168 |
163 164 95 167
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑎 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 169 |
1 2 3 4 5 6 7 8 10
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑏 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 170 |
163 164 99 169
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑏 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 171 |
168 170
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑎 ) ( +g ‘ 𝑄 ) ( 𝑇 ‘ 𝑏 ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ( +g ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑏 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 172 |
162 166 171
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) ) = ( ( 𝑇 ‘ 𝑎 ) ( +g ‘ 𝑄 ) ( 𝑇 ‘ 𝑏 ) ) ) |
| 173 |
3 9 11 12 15 20 21 172
|
isghmd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ) |