Metamath Proof Explorer


Theorem pm2mpghmlem1

Description: Lemma 1 for pm2mpghm . (Contributed by AV, 15-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p 𝑃 = ( Poly1𝑅 )
pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpfo.m = ( ·𝑠𝑄 )
pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpfo.x 𝑋 = ( var1𝐴 )
pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpfo.q 𝑄 = ( Poly1𝐴 )
pm2mpfo.l 𝐿 = ( Base ‘ 𝑄 )
Assertion pm2mpghmlem1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑀 decompPMat 𝐾 ) ( 𝐾 𝑋 ) ) ∈ 𝐿 )

Proof

Step Hyp Ref Expression
1 pm2mpfo.p 𝑃 = ( Poly1𝑅 )
2 pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpfo.m = ( ·𝑠𝑄 )
5 pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpfo.x 𝑋 = ( var1𝐴 )
7 pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpfo.q 𝑄 = ( Poly1𝐴 )
9 pm2mpfo.l 𝐿 = ( Base ‘ 𝑄 )
10 7 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
11 10 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝐴 ∈ Ring )
12 11 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐴 ∈ Ring )
13 simpl2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ Ring )
14 simpl3 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑀𝐵 )
15 simpr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 )
16 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
17 1 2 3 7 16 decpmatcl ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) )
18 13 14 15 17 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) )
19 eqid ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 )
20 16 8 6 4 19 5 9 ply1tmcl ( ( 𝐴 ∈ Ring ∧ ( 𝑀 decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑀 decompPMat 𝐾 ) ( 𝐾 𝑋 ) ) ∈ 𝐿 )
21 12 18 15 20 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑀 decompPMat 𝐾 ) ( 𝐾 𝑋 ) ) ∈ 𝐿 )