| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpfo.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pm2mpfo.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pm2mpfo.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pm2mpfo.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
| 5 |
|
pm2mpfo.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 6 |
|
pm2mpfo.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
| 7 |
|
pm2mpfo.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 8 |
|
pm2mpfo.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 9 |
|
pm2mpfo.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
| 10 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 11 |
10
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝐴 ∈ Ring ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐴 ∈ Ring ) |
| 13 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 14 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 17 |
1 2 3 7 16
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) ) |
| 18 |
13 14 15 17
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) ) |
| 19 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
| 20 |
16 8 6 4 19 5 9
|
ply1tmcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑀 decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑀 decompPMat 𝐾 ) ∗ ( 𝐾 ↑ 𝑋 ) ) ∈ 𝐿 ) |
| 21 |
12 18 15 20
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑀 decompPMat 𝐾 ) ∗ ( 𝐾 ↑ 𝑋 ) ) ∈ 𝐿 ) |