Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpfo.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pm2mpfo.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pm2mpfo.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pm2mpfo.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
5 |
|
pm2mpfo.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
6 |
|
pm2mpfo.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
7 |
|
pm2mpfo.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
8 |
|
pm2mpfo.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
9 |
|
nn0ex |
⊢ ℕ0 ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ℕ0 ∈ V ) |
11 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝐴 ∈ Ring ) |
13 |
8
|
ply1lmod |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ LMod ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑄 ∈ LMod ) |
15 |
8
|
ply1sca |
⊢ ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
16 |
12 15
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
18 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
19 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
20 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
22 |
1 2 3 7 21
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
23 |
18 19 20 22
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
24 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
25 |
8 6 24 5 17
|
ply1moncl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) |
26 |
12 25
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) |
27 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
29 |
1 2 3 7 28
|
decpmatfsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
30 |
29
|
3adant1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
31 |
10 14 16 17 23 26 27 28 4 30
|
mptscmfsupp0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |