Metamath Proof Explorer


Theorem pm2mpghmlem2

Description: Lemma 2 for pm2mpghm . (Contributed by AV, 15-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p 𝑃 = ( Poly1𝑅 )
pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpfo.m = ( ·𝑠𝑄 )
pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpfo.x 𝑋 = ( var1𝐴 )
pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpfo.q 𝑄 = ( Poly1𝐴 )
Assertion pm2mpghmlem2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) finSupp ( 0g𝑄 ) )

Proof

Step Hyp Ref Expression
1 pm2mpfo.p 𝑃 = ( Poly1𝑅 )
2 pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpfo.m = ( ·𝑠𝑄 )
5 pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpfo.x 𝑋 = ( var1𝐴 )
7 pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpfo.q 𝑄 = ( Poly1𝐴 )
9 nn0ex 0 ∈ V
10 9 a1i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ℕ0 ∈ V )
11 7 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
12 11 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝐴 ∈ Ring )
13 8 ply1lmod ( 𝐴 ∈ Ring → 𝑄 ∈ LMod )
14 12 13 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑄 ∈ LMod )
15 8 ply1sca ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) )
16 12 15 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝐴 = ( Scalar ‘ 𝑄 ) )
17 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
18 simpl2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring )
19 simpl3 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀𝐵 )
20 simpr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
21 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
22 1 2 3 7 21 decpmatcl ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
23 18 19 20 22 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
24 eqid ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 )
25 8 6 24 5 17 ply1moncl ( ( 𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 𝑋 ) ∈ ( Base ‘ 𝑄 ) )
26 12 25 sylan ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 𝑋 ) ∈ ( Base ‘ 𝑄 ) )
27 eqid ( 0g𝑄 ) = ( 0g𝑄 )
28 eqid ( 0g𝐴 ) = ( 0g𝐴 )
29 1 2 3 7 28 decpmatfsupp ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp ( 0g𝐴 ) )
30 29 3adant1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp ( 0g𝐴 ) )
31 10 14 16 17 23 26 27 28 4 30 mptscmfsupp0 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) finSupp ( 0g𝑄 ) )