Metamath Proof Explorer


Theorem pm2mpgrpiso

Description: The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019)

Ref Expression
Hypotheses pm2mpfo.p 𝑃 = ( Poly1𝑅 )
pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpfo.m = ( ·𝑠𝑄 )
pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpfo.x 𝑋 = ( var1𝐴 )
pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpfo.q 𝑄 = ( Poly1𝐴 )
pm2mpfo.l 𝐿 = ( Base ‘ 𝑄 )
pm2mpfo.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
Assertion pm2mpgrpiso ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 GrpIso 𝑄 ) )

Proof

Step Hyp Ref Expression
1 pm2mpfo.p 𝑃 = ( Poly1𝑅 )
2 pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpfo.m = ( ·𝑠𝑄 )
5 pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpfo.x 𝑋 = ( var1𝐴 )
7 pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpfo.q 𝑄 = ( Poly1𝐴 )
9 pm2mpfo.l 𝐿 = ( Base ‘ 𝑄 )
10 pm2mpfo.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
11 1 2 3 4 5 6 7 8 9 10 pm2mpghm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) )
12 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
13 1 2 3 4 5 6 7 8 12 10 pm2mpf1o ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵1-1-onto→ ( Base ‘ 𝑄 ) )
14 3 12 isgim ( 𝑇 ∈ ( 𝐶 GrpIso 𝑄 ) ↔ ( 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ∧ 𝑇 : 𝐵1-1-onto→ ( Base ‘ 𝑄 ) ) )
15 11 13 14 sylanbrc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 GrpIso 𝑄 ) )