| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpfo.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pm2mpfo.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pm2mpfo.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pm2mpfo.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
| 5 |
|
pm2mpfo.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 6 |
|
pm2mpfo.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
| 7 |
|
pm2mpfo.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 8 |
|
pm2mpfo.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 9 |
|
pm2mpfo.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
| 10 |
|
pm2mpfo.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 13 |
1 2 3 4 5 6 7 8 12 10
|
pm2mpf1o |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 –1-1-onto→ ( Base ‘ 𝑄 ) ) |
| 14 |
3 12
|
isgim |
⊢ ( 𝑇 ∈ ( 𝐶 GrpIso 𝑄 ) ↔ ( 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ∧ 𝑇 : 𝐵 –1-1-onto→ ( Base ‘ 𝑄 ) ) ) |
| 15 |
11 13 14
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 GrpIso 𝑄 ) ) |