Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpmhm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pm2mpmhm.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pm2mpmhm.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
pm2mpmhm.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
5 |
|
pm2mpmhm.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
6 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
7 |
|
eqid |
⊢ ( mulGrp ‘ 𝐶 ) = ( mulGrp ‘ 𝐶 ) |
8 |
7
|
ringmgp |
⊢ ( 𝐶 ∈ Ring → ( mulGrp ‘ 𝐶 ) ∈ Mnd ) |
9 |
6 8
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( mulGrp ‘ 𝐶 ) ∈ Mnd ) |
10 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
11 |
4
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
12 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
13 |
12
|
ringmgp |
⊢ ( 𝑄 ∈ Ring → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
14 |
10 11 13
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
16 |
7 15
|
mgpbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( mulGrp ‘ 𝐶 ) ) |
17 |
16
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) = ( Base ‘ 𝐶 ) |
18 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑄 ) = ( ·𝑠 ‘ 𝑄 ) |
19 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
20 |
|
eqid |
⊢ ( var1 ‘ 𝐴 ) = ( var1 ‘ 𝐴 ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
22 |
12 21
|
mgpbas |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
23 |
22
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝑄 ) ) = ( Base ‘ 𝑄 ) |
24 |
1 2 17 18 19 20 3 4 5 23
|
pm2mpf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ⟶ ( Base ‘ ( mulGrp ‘ 𝑄 ) ) ) |
25 |
1 2 3 4 5 17
|
pm2mpmhmlem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ) |
26 |
1 2 15 18 19 20 3 4 5
|
idpm2idmp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 ‘ ( 1r ‘ 𝐶 ) ) = ( 1r ‘ 𝑄 ) ) |
27 |
24 25 26
|
3jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 : ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ⟶ ( Base ‘ ( mulGrp ‘ 𝑄 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ∧ ( 𝑇 ‘ ( 1r ‘ 𝐶 ) ) = ( 1r ‘ 𝑄 ) ) ) |
28 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) = ( Base ‘ ( mulGrp ‘ 𝐶 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑄 ) ) = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
31 |
7 30
|
mgpplusg |
⊢ ( .r ‘ 𝐶 ) = ( +g ‘ ( mulGrp ‘ 𝐶 ) ) |
32 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
33 |
12 32
|
mgpplusg |
⊢ ( .r ‘ 𝑄 ) = ( +g ‘ ( mulGrp ‘ 𝑄 ) ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝐶 ) = ( 1r ‘ 𝐶 ) |
35 |
7 34
|
ringidval |
⊢ ( 1r ‘ 𝐶 ) = ( 0g ‘ ( mulGrp ‘ 𝐶 ) ) |
36 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
37 |
12 36
|
ringidval |
⊢ ( 1r ‘ 𝑄 ) = ( 0g ‘ ( mulGrp ‘ 𝑄 ) ) |
38 |
28 29 31 33 35 37
|
ismhm |
⊢ ( 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) ↔ ( ( ( mulGrp ‘ 𝐶 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑄 ) ∈ Mnd ) ∧ ( 𝑇 : ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ⟶ ( Base ‘ ( mulGrp ‘ 𝑄 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐶 ) ) ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ∧ ( 𝑇 ‘ ( 1r ‘ 𝐶 ) ) = ( 1r ‘ 𝑄 ) ) ) ) |
39 |
9 14 27 38
|
syl21anbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) ) |