Metamath Proof Explorer


Theorem pm2mpmhmlem1

Description: Lemma 1 for pm2mpmhm . (Contributed by AV, 21-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p 𝑃 = ( Poly1𝑅 )
pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpfo.m = ( ·𝑠𝑄 )
pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpfo.x 𝑋 = ( var1𝐴 )
pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpfo.q 𝑄 = ( Poly1𝐴 )
pm2mpfo.l 𝐿 = ( Base ‘ 𝑄 )
pm2mpfo.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
Assertion pm2mpmhmlem1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑙 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑙𝑘 ) ) ) ) ) ( 𝑙 𝑋 ) ) ) finSupp ( 0g𝑄 ) )

Proof

Step Hyp Ref Expression
1 pm2mpfo.p 𝑃 = ( Poly1𝑅 )
2 pm2mpfo.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpfo.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpfo.m = ( ·𝑠𝑄 )
5 pm2mpfo.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpfo.x 𝑋 = ( var1𝐴 )
7 pm2mpfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpfo.q 𝑄 = ( Poly1𝐴 )
9 pm2mpfo.l 𝐿 = ( Base ‘ 𝑄 )
10 pm2mpfo.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
11 fvexd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 0g𝑄 ) ∈ V )
12 ovexd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑙𝑘 ) ) ) ) ) ( 𝑙 𝑋 ) ) ∈ V )
13 oveq2 ( 𝑙 = 𝑛 → ( 0 ... 𝑙 ) = ( 0 ... 𝑛 ) )
14 oveq1 ( 𝑙 = 𝑛 → ( 𝑙𝑘 ) = ( 𝑛𝑘 ) )
15 14 oveq2d ( 𝑙 = 𝑛 → ( 𝑦 decompPMat ( 𝑙𝑘 ) ) = ( 𝑦 decompPMat ( 𝑛𝑘 ) ) )
16 15 oveq2d ( 𝑙 = 𝑛 → ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑙𝑘 ) ) ) = ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) )
17 13 16 mpteq12dv ( 𝑙 = 𝑛 → ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑙𝑘 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) )
18 17 oveq2d ( 𝑙 = 𝑛 → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑙𝑘 ) ) ) ) ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) )
19 oveq1 ( 𝑙 = 𝑛 → ( 𝑙 𝑋 ) = ( 𝑛 𝑋 ) )
20 18 19 oveq12d ( 𝑙 = 𝑛 → ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑙𝑘 ) ) ) ) ) ( 𝑙 𝑋 ) ) = ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) ( 𝑛 𝑋 ) ) )
21 simpll ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑁 ∈ Fin )
22 simplr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑅 ∈ Ring )
23 1 2 pmatring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring )
24 23 anim1i ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐶 ∈ Ring ∧ ( 𝑥𝐵𝑦𝐵 ) ) )
25 3anass ( ( 𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵 ) ↔ ( 𝐶 ∈ Ring ∧ ( 𝑥𝐵𝑦𝐵 ) ) )
26 24 25 sylibr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵 ) )
27 eqid ( .r𝐶 ) = ( .r𝐶 )
28 3 27 ringcl ( ( 𝐶 ∈ Ring ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( .r𝐶 ) 𝑦 ) ∈ 𝐵 )
29 26 28 syl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐶 ) 𝑦 ) ∈ 𝐵 )
30 eqid ( 0g𝑅 ) = ( 0g𝑅 )
31 1 2 3 30 pmatcoe1fsupp ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑥 ( .r𝐶 ) 𝑦 ) ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) )
32 21 22 29 31 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) )
33 fvoveq1 ( 𝑎 = 𝑖 → ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) = ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) )
34 33 fveq1d ( 𝑎 = 𝑖 → ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) )
35 34 eqeq1d ( 𝑎 = 𝑖 → ( ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ↔ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) )
36 oveq2 ( 𝑏 = 𝑗 → ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) = ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) )
37 36 fveq2d ( 𝑏 = 𝑗 → ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) = ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) )
38 37 fveq1d ( 𝑏 = 𝑗 → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )
39 38 eqeq1d ( 𝑏 = 𝑗 → ( ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ↔ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) )
40 35 39 rspc2va ( ( ( 𝑖𝑁𝑗𝑁 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) )
41 40 expcom ( ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) → ( ( 𝑖𝑁𝑗𝑁 ) → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) )
42 41 adantl ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑖𝑁𝑗𝑁 ) → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) )
43 42 3impib ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) ∧ 𝑖𝑁𝑗𝑁 ) → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) )
44 43 mpoeq3dva ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 0g𝑅 ) ) )
45 7 30 mat0op ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g𝐴 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 0g𝑅 ) ) )
46 45 ad3antrrr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( 0g𝐴 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 0g𝑅 ) ) )
47 7 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
48 8 ply1sca ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) )
49 47 48 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 = ( Scalar ‘ 𝑄 ) )
50 49 ad3antrrr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → 𝐴 = ( Scalar ‘ 𝑄 ) )
51 50 fveq2d ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( 0g𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) )
52 44 46 51 3eqtr2d ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) )
53 52 oveq1d ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑛 𝑋 ) ) )
54 8 ply1lmod ( 𝐴 ∈ Ring → 𝑄 ∈ LMod )
55 47 54 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod )
56 55 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑄 ∈ LMod )
57 47 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝐴 ∈ Ring )
58 eqid ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 )
59 8 6 58 5 9 ply1moncl ( ( 𝐴 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 𝑋 ) ∈ 𝐿 )
60 57 59 sylan ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 𝑋 ) ∈ 𝐿 )
61 eqid ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 )
62 eqid ( 0g ‘ ( Scalar ‘ 𝑄 ) ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) )
63 eqid ( 0g𝑄 ) = ( 0g𝑄 )
64 9 61 4 62 63 lmod0vs ( ( 𝑄 ∈ LMod ∧ ( 𝑛 𝑋 ) ∈ 𝐿 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) )
65 56 60 64 syl2an2r ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) )
66 65 adantr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) )
67 53 66 eqtrd ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) )
68 67 ex ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) )
69 68 imim2d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( 𝑠 < 𝑛 → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
70 69 ralimdva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
71 70 reximdv ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ∀ 𝑎𝑁𝑏𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
72 32 71 mpd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) )
73 2 3 decpmatval ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) ∈ 𝐵𝑛 ∈ ℕ0 ) → ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) )
74 29 73 sylan ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) )
75 74 oveq1d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) )
76 75 eqeq1d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ↔ ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) )
77 76 imbi2d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ↔ ( 𝑠 < 𝑛 → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
78 77 ralbidva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
79 78 rexbidv ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ↔ ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
80 72 79 mpbird ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) )
81 1 2 3 7 decpmatmul ( ( 𝑅 ∈ Ring ∧ ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) )
82 81 ad4ant234 ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) )
83 82 eqcomd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) = ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) )
84 83 oveq1d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) ( 𝑛 𝑋 ) ) = ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) )
85 84 eqeq1d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ↔ ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) )
86 85 imbi2d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ↔ ( 𝑠 < 𝑛 → ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
87 86 ralbidva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
88 87 rexbidv ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ↔ ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( ( 𝑥 ( .r𝐶 ) 𝑦 ) decompPMat 𝑛 ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) ) )
89 80 88 mpbird ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑛𝑘 ) ) ) ) ) ( 𝑛 𝑋 ) ) = ( 0g𝑄 ) ) )
90 11 12 20 89 mptnn0fsuppd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑙 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r𝐴 ) ( 𝑦 decompPMat ( 𝑙𝑘 ) ) ) ) ) ( 𝑙 𝑋 ) ) ) finSupp ( 0g𝑄 ) )