Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpmhm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pm2mpmhm.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pm2mpmhm.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
pm2mpmhm.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
5 |
|
pm2mpmhm.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
6 |
|
pm2mpmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
7 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑁 ∈ Fin ) |
8 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
9 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ Ring ) |
11 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
15 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
16 |
6 15
|
ringcl |
⊢ ( ( 𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) |
17 |
10 12 14 16
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) |
18 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑄 ) = ( ·𝑠 ‘ 𝑄 ) |
19 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
20 |
|
eqid |
⊢ ( var1 ‘ 𝐴 ) = ( var1 ‘ 𝐴 ) |
21 |
1 2 6 18 19 20 3 4 5
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
22 |
7 8 17 21
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
23 |
1 2 6 3
|
decpmatmul |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) |
24 |
23
|
ad4ant234 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) |
25 |
24
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) = ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) |
26 |
25
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) |
27 |
26
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
29 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝐴 ∈ Ring ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
32 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
33 |
|
ringcmn |
⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ CMnd ) |
34 |
29 33
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ CMnd ) |
35 |
34
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ CMnd ) |
36 |
|
fzfid |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
37 |
30
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ Ring ) |
38 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑅 ∈ Ring ) |
39 |
12
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑥 ∈ 𝐵 ) |
40 |
|
elfznn0 |
⊢ ( 𝑧 ∈ ( 0 ... 𝑘 ) → 𝑧 ∈ ℕ0 ) |
41 |
40
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑧 ∈ ℕ0 ) |
42 |
1 2 6 3 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ ℕ0 ) → ( 𝑥 decompPMat 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
43 |
38 39 41 42
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑥 decompPMat 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
44 |
14
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑦 ∈ 𝐵 ) |
45 |
|
fznn0sub |
⊢ ( 𝑧 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑧 ) ∈ ℕ0 ) |
46 |
45
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑧 ) ∈ ℕ0 ) |
47 |
1 2 6 3 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑘 − 𝑧 ) ∈ ℕ0 ) → ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ∈ ( Base ‘ 𝐴 ) ) |
48 |
38 44 46 47
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ∈ ( Base ‘ 𝐴 ) ) |
49 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
50 |
31 49
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑥 decompPMat 𝑧 ) ∈ ( Base ‘ 𝐴 ) ∧ ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
51 |
37 43 48 50
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
52 |
51
|
ralrimiva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑧 ∈ ( 0 ... 𝑘 ) ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
53 |
31 35 36 52
|
gsummptcl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
54 |
53
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
55 |
1 2 6 3 49 32
|
decpmatmulsumfsupp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) finSupp ( 0g ‘ 𝐴 ) ) |
56 |
55
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) finSupp ( 0g ‘ 𝐴 ) ) |
57 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
58 |
4 28 20 19 30 31 18 32 54 56 57
|
gsummoncoe1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ⦋ 𝑛 / 𝑘 ⦌ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) |
59 |
|
csbov2g |
⊢ ( 𝑛 ∈ ℕ0 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) |
60 |
|
id |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) |
61 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 0 ... 𝑘 ) = ( 0 ... 𝑛 ) ) |
62 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 𝑧 ) = ( 𝑛 − 𝑧 ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) = ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) |
64 |
63
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) = ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) |
65 |
61 64
|
mpteq12dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑘 = 𝑛 ) → ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) |
67 |
60 66
|
csbied |
⊢ ( 𝑛 ∈ ℕ0 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) |
68 |
67
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝐴 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) ) |
69 |
59 68
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ0 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) ) |
70 |
69
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ⦋ 𝑛 / 𝑘 ⦌ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) ) |
71 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) = ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ) |
72 |
|
oveq2 |
⊢ ( 𝑟 = 𝑛 → ( 0 ... 𝑟 ) = ( 0 ... 𝑛 ) ) |
73 |
|
fvoveq1 |
⊢ ( 𝑟 = 𝑛 → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) |
74 |
73
|
oveq2d |
⊢ ( 𝑟 = 𝑛 → ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) = ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) |
75 |
72 74
|
mpteq12dv |
⊢ ( 𝑟 = 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
76 |
75
|
oveq2d |
⊢ ( 𝑟 = 𝑛 → ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) = ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
77 |
76
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑟 = 𝑛 ) → ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) = ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
78 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ∈ V ) |
79 |
71 77 57 78
|
fvmptd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ‘ 𝑛 ) = ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
80 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
81 |
4
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
82 |
29 81
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
83 |
|
ringcmn |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ CMnd ) |
84 |
82 83
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ CMnd ) |
85 |
84
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑄 ∈ CMnd ) |
86 |
|
nn0ex |
⊢ ℕ0 ∈ V |
87 |
86
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ℕ0 ∈ V ) |
88 |
11
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝐵 ) ) |
89 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝐵 ) ) |
90 |
88 89
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
91 |
90
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
92 |
1 2 6 18 19 20 3 4 28
|
pm2mpghmlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
93 |
91 92
|
sylan |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
94 |
93
|
fmpttd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
95 |
1 2 6 18 19 20 3 4
|
pm2mpghmlem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
96 |
91 95
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
97 |
28 80 85 87 94 96
|
gsumcl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
98 |
13
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐵 ) ) |
99 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐵 ) ) |
100 |
98 99
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
101 |
100
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
102 |
1 2 6 18 19 20 3 4 28
|
pm2mpghmlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
103 |
101 102
|
sylan |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
104 |
103
|
fmpttd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
105 |
7 8 14
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
106 |
105
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
107 |
1 2 6 18 19 20 3 4
|
pm2mpghmlem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
108 |
106 107
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
109 |
28 80 85 87 104 108
|
gsumcl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
110 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
111 |
4 110 49 28
|
coe1mul |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) → ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) = ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ) |
112 |
111
|
fveq1d |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) → ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) = ( ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ‘ 𝑛 ) ) |
113 |
30 97 109 112
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) = ( ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ‘ 𝑛 ) ) |
114 |
|
oveq2 |
⊢ ( 𝑧 = 𝑙 → ( 𝑥 decompPMat 𝑧 ) = ( 𝑥 decompPMat 𝑙 ) ) |
115 |
|
oveq2 |
⊢ ( 𝑧 = 𝑙 → ( 𝑛 − 𝑧 ) = ( 𝑛 − 𝑙 ) ) |
116 |
115
|
oveq2d |
⊢ ( 𝑧 = 𝑙 → ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) = ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) |
117 |
114 116
|
oveq12d |
⊢ ( 𝑧 = 𝑙 → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) = ( ( 𝑥 decompPMat 𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) ) |
118 |
117
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) ) |
119 |
29
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → 𝐴 ∈ Ring ) |
120 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
121 |
12
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 ∈ 𝐵 ) |
122 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
123 |
1 2 6 3 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
124 |
120 121 122 123
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
125 |
124
|
ralrimiva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑥 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
126 |
8 12
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
127 |
126
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
128 |
1 2 6 3 32
|
decpmatfsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
129 |
127 128
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
130 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → 𝑙 ∈ ℕ0 ) |
131 |
130
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → 𝑙 ∈ ℕ0 ) |
132 |
4 28 20 19 119 31 18 32 125 129 131
|
gsummoncoe1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ⦋ 𝑙 / 𝑘 ⦌ ( 𝑥 decompPMat 𝑘 ) ) |
133 |
|
csbov2g |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ⦋ 𝑙 / 𝑘 ⦌ ( 𝑥 decompPMat 𝑘 ) = ( 𝑥 decompPMat ⦋ 𝑙 / 𝑘 ⦌ 𝑘 ) ) |
134 |
|
csbvarg |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ⦋ 𝑙 / 𝑘 ⦌ 𝑘 = 𝑙 ) |
135 |
134
|
oveq2d |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑥 decompPMat ⦋ 𝑙 / 𝑘 ⦌ 𝑘 ) = ( 𝑥 decompPMat 𝑙 ) ) |
136 |
133 135
|
eqtrd |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ⦋ 𝑙 / 𝑘 ⦌ ( 𝑥 decompPMat 𝑘 ) = ( 𝑥 decompPMat 𝑙 ) ) |
137 |
136
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ⦋ 𝑙 / 𝑘 ⦌ ( 𝑥 decompPMat 𝑘 ) = ( 𝑥 decompPMat 𝑙 ) ) |
138 |
132 137
|
eqtr2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑥 decompPMat 𝑙 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ) |
139 |
14
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑦 ∈ 𝐵 ) |
140 |
1 2 6 3 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
141 |
120 139 122 140
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
142 |
141
|
ralrimiva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑦 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
143 |
8 14
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
144 |
143
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
145 |
1 2 6 3 32
|
decpmatfsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
146 |
144 145
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
147 |
|
fznn0sub |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑛 − 𝑙 ) ∈ ℕ0 ) |
148 |
147
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑛 − 𝑙 ) ∈ ℕ0 ) |
149 |
4 28 20 19 119 31 18 32 142 146 148
|
gsummoncoe1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) = ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ ( 𝑦 decompPMat 𝑘 ) ) |
150 |
|
ovex |
⊢ ( 𝑛 − 𝑙 ) ∈ V |
151 |
|
csbov2g |
⊢ ( ( 𝑛 − 𝑙 ) ∈ V → ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ ( 𝑦 decompPMat 𝑘 ) = ( 𝑦 decompPMat ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 ) ) |
152 |
150 151
|
mp1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ ( 𝑦 decompPMat 𝑘 ) = ( 𝑦 decompPMat ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 ) ) |
153 |
|
csbvarg |
⊢ ( ( 𝑛 − 𝑙 ) ∈ V → ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 = ( 𝑛 − 𝑙 ) ) |
154 |
150 153
|
mp1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 = ( 𝑛 − 𝑙 ) ) |
155 |
154
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑦 decompPMat ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 ) = ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) |
156 |
149 152 155
|
3eqtrrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) |
157 |
138 156
|
oveq12d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑥 decompPMat 𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) = ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) |
158 |
157
|
mpteq2dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
159 |
118 158
|
eqtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
160 |
159
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
161 |
79 113 160
|
3eqtr4rd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) |
162 |
58 70 161
|
3eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) |
163 |
162
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) |
164 |
29
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐴 ∈ Ring ) |
165 |
84
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑄 ∈ CMnd ) |
166 |
86
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ℕ0 ∈ V ) |
167 |
4
|
ply1lmod |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ LMod ) |
168 |
29 167
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod ) |
169 |
168
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑄 ∈ LMod ) |
170 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ CMnd ) |
171 |
|
fzfid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
172 |
29
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ Ring ) |
173 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑅 ∈ Ring ) |
174 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 ∈ 𝐵 ) |
175 |
174
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑥 ∈ 𝐵 ) |
176 |
40
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑧 ∈ ℕ0 ) |
177 |
173 175 176 42
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑥 decompPMat 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
178 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑦 ∈ 𝐵 ) |
179 |
178
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑦 ∈ 𝐵 ) |
180 |
45
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑧 ) ∈ ℕ0 ) |
181 |
173 179 180 47
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ∈ ( Base ‘ 𝐴 ) ) |
182 |
172 177 181 50
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
183 |
182
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑧 ∈ ( 0 ... 𝑘 ) ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
184 |
31 170 171 183
|
gsummptcl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
185 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ Ring ) |
186 |
4
|
ply1sca |
⊢ ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
187 |
185 186
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
188 |
187
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( Scalar ‘ 𝑄 ) = 𝐴 ) |
189 |
188
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ 𝐴 ) ) |
190 |
184 189
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
191 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
192 |
4 20 191 19 28
|
ply1moncl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑄 ) ) |
193 |
185 192
|
sylancom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑄 ) ) |
194 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
195 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) |
196 |
28 194 18 195
|
lmodvscl |
⊢ ( ( 𝑄 ∈ LMod ∧ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
197 |
169 190 193 196
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
198 |
197
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
199 |
1 2 6 18 19 20 3 4 28 5
|
pm2mpmhmlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
200 |
28 80 165 166 198 199
|
gsumcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
201 |
82
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑄 ∈ Ring ) |
202 |
90 92
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
203 |
202
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
204 |
90 95
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
205 |
28 80 165 166 203 204
|
gsumcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
206 |
100 102
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
207 |
206
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
208 |
7 8 14 107
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
209 |
28 80 165 166 207 208
|
gsumcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
210 |
28 110
|
ringcl |
⊢ ( ( 𝑄 ∈ Ring ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
211 |
201 205 209 210
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
212 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
213 |
|
eqid |
⊢ ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) = ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
214 |
4 28 212 213
|
ply1coe1eq |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ∧ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ↔ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ) |
215 |
164 200 211 214
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ↔ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ) |
216 |
163 215
|
mpbid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
217 |
22 27 216
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
218 |
1 2 6 18 19 20 3 4 5
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
219 |
7 8 12 218
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
220 |
1 2 6 18 19 20 3 4 5
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
221 |
7 8 14 220
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
222 |
219 221
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
223 |
217 222
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ) |
224 |
223
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ) |