| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpmhm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pm2mpmhm.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pm2mpmhm.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
pm2mpmhm.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 5 |
|
pm2mpmhm.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 6 |
|
pm2mpmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 7 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑁 ∈ Fin ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 9 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ Ring ) |
| 11 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 13 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
| 16 |
6 15
|
ringcl |
⊢ ( ( 𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) |
| 17 |
10 12 14 16
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) |
| 18 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑄 ) = ( ·𝑠 ‘ 𝑄 ) |
| 19 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 20 |
|
eqid |
⊢ ( var1 ‘ 𝐴 ) = ( var1 ‘ 𝐴 ) |
| 21 |
1 2 6 18 19 20 3 4 5
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 22 |
7 8 17 21
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 23 |
1 2 6 3
|
decpmatmul |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) |
| 24 |
23
|
ad4ant234 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) = ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) |
| 26 |
25
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 29 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝐴 ∈ Ring ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 32 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 33 |
|
ringcmn |
⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ CMnd ) |
| 34 |
29 33
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ CMnd ) |
| 35 |
34
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ CMnd ) |
| 36 |
|
fzfid |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
| 37 |
30
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ Ring ) |
| 38 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑅 ∈ Ring ) |
| 39 |
12
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑥 ∈ 𝐵 ) |
| 40 |
|
elfznn0 |
⊢ ( 𝑧 ∈ ( 0 ... 𝑘 ) → 𝑧 ∈ ℕ0 ) |
| 41 |
40
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑧 ∈ ℕ0 ) |
| 42 |
1 2 6 3 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ ℕ0 ) → ( 𝑥 decompPMat 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
| 43 |
38 39 41 42
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑥 decompPMat 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
| 44 |
14
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑦 ∈ 𝐵 ) |
| 45 |
|
fznn0sub |
⊢ ( 𝑧 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑧 ) ∈ ℕ0 ) |
| 46 |
45
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑧 ) ∈ ℕ0 ) |
| 47 |
1 2 6 3 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑘 − 𝑧 ) ∈ ℕ0 ) → ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 48 |
38 44 46 47
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 49 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 50 |
31 49
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑥 decompPMat 𝑧 ) ∈ ( Base ‘ 𝐴 ) ∧ ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 51 |
37 43 48 50
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 52 |
51
|
ralrimiva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑧 ∈ ( 0 ... 𝑘 ) ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 53 |
31 35 36 52
|
gsummptcl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 54 |
53
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 55 |
1 2 6 3 49 32
|
decpmatmulsumfsupp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 57 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 58 |
4 28 20 19 30 31 18 32 54 56 57
|
gsummoncoe1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ⦋ 𝑛 / 𝑘 ⦌ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) |
| 59 |
|
csbov2g |
⊢ ( 𝑛 ∈ ℕ0 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ) |
| 60 |
|
id |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) |
| 61 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 0 ... 𝑘 ) = ( 0 ... 𝑛 ) ) |
| 62 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 𝑧 ) = ( 𝑛 − 𝑧 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) = ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) = ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) |
| 65 |
61 64
|
mpteq12dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑘 = 𝑛 ) → ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) |
| 67 |
60 66
|
csbied |
⊢ ( 𝑛 ∈ ℕ0 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) |
| 68 |
67
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝐴 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) ) |
| 69 |
59 68
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ0 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) ) |
| 70 |
69
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ⦋ 𝑛 / 𝑘 ⦌ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) ) |
| 71 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) = ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ) |
| 72 |
|
oveq2 |
⊢ ( 𝑟 = 𝑛 → ( 0 ... 𝑟 ) = ( 0 ... 𝑛 ) ) |
| 73 |
|
fvoveq1 |
⊢ ( 𝑟 = 𝑛 → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) |
| 74 |
73
|
oveq2d |
⊢ ( 𝑟 = 𝑛 → ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) = ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) |
| 75 |
72 74
|
mpteq12dv |
⊢ ( 𝑟 = 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( 𝑟 = 𝑛 → ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) = ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑟 = 𝑛 ) → ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) = ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 78 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ∈ V ) |
| 79 |
71 77 57 78
|
fvmptd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ‘ 𝑛 ) = ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 80 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 81 |
4
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
| 82 |
29 81
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
| 83 |
|
ringcmn |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ CMnd ) |
| 84 |
82 83
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ CMnd ) |
| 85 |
84
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑄 ∈ CMnd ) |
| 86 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 87 |
86
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ℕ0 ∈ V ) |
| 88 |
11
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 89 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 90 |
88 89
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
| 91 |
90
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
| 92 |
1 2 6 18 19 20 3 4 28
|
pm2mpghmlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 93 |
91 92
|
sylan |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 94 |
93
|
fmpttd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
| 95 |
1 2 6 18 19 20 3 4
|
pm2mpghmlem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 96 |
91 95
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 97 |
28 80 85 87 94 96
|
gsumcl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 98 |
13
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐵 ) ) |
| 99 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑦 ∈ 𝐵 ) ) |
| 100 |
98 99
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
| 101 |
100
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
| 102 |
1 2 6 18 19 20 3 4 28
|
pm2mpghmlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 103 |
101 102
|
sylan |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 104 |
103
|
fmpttd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
| 105 |
7 8 14
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
| 106 |
105
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
| 107 |
1 2 6 18 19 20 3 4
|
pm2mpghmlem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 108 |
106 107
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 109 |
28 80 85 87 104 108
|
gsumcl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 110 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
| 111 |
4 110 49 28
|
coe1mul |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) → ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) = ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ) |
| 112 |
111
|
fveq1d |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) → ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) = ( ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ‘ 𝑛 ) ) |
| 113 |
30 97 109 112
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) = ( ( 𝑟 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑟 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑟 − 𝑙 ) ) ) ) ) ) ‘ 𝑛 ) ) |
| 114 |
|
oveq2 |
⊢ ( 𝑧 = 𝑙 → ( 𝑥 decompPMat 𝑧 ) = ( 𝑥 decompPMat 𝑙 ) ) |
| 115 |
|
oveq2 |
⊢ ( 𝑧 = 𝑙 → ( 𝑛 − 𝑧 ) = ( 𝑛 − 𝑙 ) ) |
| 116 |
115
|
oveq2d |
⊢ ( 𝑧 = 𝑙 → ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) = ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) |
| 117 |
114 116
|
oveq12d |
⊢ ( 𝑧 = 𝑙 → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) = ( ( 𝑥 decompPMat 𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) ) |
| 118 |
117
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) ) |
| 119 |
29
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → 𝐴 ∈ Ring ) |
| 120 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 121 |
12
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 ∈ 𝐵 ) |
| 122 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 123 |
1 2 6 3 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 124 |
120 121 122 123
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 125 |
124
|
ralrimiva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑥 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 126 |
8 12
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
| 127 |
126
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ) |
| 128 |
1 2 6 3 32
|
decpmatfsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 129 |
127 128
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 130 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → 𝑙 ∈ ℕ0 ) |
| 131 |
130
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → 𝑙 ∈ ℕ0 ) |
| 132 |
4 28 20 19 119 31 18 32 125 129 131
|
gsummoncoe1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ⦋ 𝑙 / 𝑘 ⦌ ( 𝑥 decompPMat 𝑘 ) ) |
| 133 |
|
csbov2g |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ⦋ 𝑙 / 𝑘 ⦌ ( 𝑥 decompPMat 𝑘 ) = ( 𝑥 decompPMat ⦋ 𝑙 / 𝑘 ⦌ 𝑘 ) ) |
| 134 |
|
csbvarg |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ⦋ 𝑙 / 𝑘 ⦌ 𝑘 = 𝑙 ) |
| 135 |
134
|
oveq2d |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑥 decompPMat ⦋ 𝑙 / 𝑘 ⦌ 𝑘 ) = ( 𝑥 decompPMat 𝑙 ) ) |
| 136 |
133 135
|
eqtrd |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ⦋ 𝑙 / 𝑘 ⦌ ( 𝑥 decompPMat 𝑘 ) = ( 𝑥 decompPMat 𝑙 ) ) |
| 137 |
136
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ⦋ 𝑙 / 𝑘 ⦌ ( 𝑥 decompPMat 𝑘 ) = ( 𝑥 decompPMat 𝑙 ) ) |
| 138 |
132 137
|
eqtr2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑥 decompPMat 𝑙 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ) |
| 139 |
14
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑦 ∈ 𝐵 ) |
| 140 |
1 2 6 3 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 141 |
120 139 122 140
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 142 |
141
|
ralrimiva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑦 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 143 |
8 14
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
| 144 |
143
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ) |
| 145 |
1 2 6 3 32
|
decpmatfsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 146 |
144 145
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑦 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 147 |
|
fznn0sub |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑛 − 𝑙 ) ∈ ℕ0 ) |
| 148 |
147
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑛 − 𝑙 ) ∈ ℕ0 ) |
| 149 |
4 28 20 19 119 31 18 32 142 146 148
|
gsummoncoe1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) = ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ ( 𝑦 decompPMat 𝑘 ) ) |
| 150 |
|
ovex |
⊢ ( 𝑛 − 𝑙 ) ∈ V |
| 151 |
|
csbov2g |
⊢ ( ( 𝑛 − 𝑙 ) ∈ V → ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ ( 𝑦 decompPMat 𝑘 ) = ( 𝑦 decompPMat ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 ) ) |
| 152 |
150 151
|
mp1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ ( 𝑦 decompPMat 𝑘 ) = ( 𝑦 decompPMat ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 ) ) |
| 153 |
|
csbvarg |
⊢ ( ( 𝑛 − 𝑙 ) ∈ V → ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 = ( 𝑛 − 𝑙 ) ) |
| 154 |
150 153
|
mp1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 = ( 𝑛 − 𝑙 ) ) |
| 155 |
154
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑦 decompPMat ⦋ ( 𝑛 − 𝑙 ) / 𝑘 ⦌ 𝑘 ) = ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) |
| 156 |
149 152 155
|
3eqtrrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) |
| 157 |
138 156
|
oveq12d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑥 decompPMat 𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) = ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) |
| 158 |
157
|
mpteq2dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑙 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 159 |
118 158
|
eqtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 160 |
159
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) = ( 𝐴 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ( .r ‘ 𝐴 ) ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 161 |
79 113 160
|
3eqtr4rd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑧 ) ) ) ) ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) |
| 162 |
58 70 161
|
3eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) |
| 163 |
162
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ) |
| 164 |
29
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐴 ∈ Ring ) |
| 165 |
84
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑄 ∈ CMnd ) |
| 166 |
86
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ℕ0 ∈ V ) |
| 167 |
4
|
ply1lmod |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ LMod ) |
| 168 |
29 167
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod ) |
| 169 |
168
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑄 ∈ LMod ) |
| 170 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ CMnd ) |
| 171 |
|
fzfid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
| 172 |
29
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ Ring ) |
| 173 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑅 ∈ Ring ) |
| 174 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑥 ∈ 𝐵 ) |
| 175 |
174
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑥 ∈ 𝐵 ) |
| 176 |
40
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑧 ∈ ℕ0 ) |
| 177 |
173 175 176 42
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑥 decompPMat 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
| 178 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑦 ∈ 𝐵 ) |
| 179 |
178
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → 𝑦 ∈ 𝐵 ) |
| 180 |
45
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑧 ) ∈ ℕ0 ) |
| 181 |
173 179 180 47
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 182 |
172 177 181 50
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 183 |
182
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑧 ∈ ( 0 ... 𝑘 ) ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 184 |
31 170 171 183
|
gsummptcl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 185 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ Ring ) |
| 186 |
4
|
ply1sca |
⊢ ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 187 |
185 186
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 188 |
187
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( Scalar ‘ 𝑄 ) = 𝐴 ) |
| 189 |
188
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ 𝐴 ) ) |
| 190 |
184 189
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 191 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
| 192 |
4 20 191 19 28
|
ply1moncl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 193 |
185 192
|
sylancom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 194 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
| 195 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) |
| 196 |
28 194 18 195
|
lmodvscl |
⊢ ( ( 𝑄 ∈ LMod ∧ ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 197 |
169 190 193 196
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 198 |
197
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
| 199 |
1 2 6 18 19 20 3 4 28 5
|
pm2mpmhmlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 200 |
28 80 165 166 198 199
|
gsumcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 201 |
82
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑄 ∈ Ring ) |
| 202 |
90 92
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 203 |
202
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
| 204 |
90 95
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 205 |
28 80 165 166 203 204
|
gsumcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 206 |
100 102
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 207 |
206
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑄 ) ) |
| 208 |
7 8 14 107
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 209 |
28 80 165 166 207 208
|
gsumcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 210 |
28 110
|
ringcl |
⊢ ( ( 𝑄 ∈ Ring ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 211 |
201 205 209 210
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 212 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 213 |
|
eqid |
⊢ ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) = ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
| 214 |
4 28 212 213
|
ply1coe1eq |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ∧ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∈ ( Base ‘ 𝑄 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ↔ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 215 |
164 200 211 214
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ‘ 𝑛 ) ↔ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 216 |
163 215
|
mpbid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 Σg ( 𝑧 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝑥 decompPMat 𝑧 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑘 − 𝑧 ) ) ) ) ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
| 217 |
22 27 216
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
| 218 |
1 2 6 18 19 20 3 4 5
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 219 |
7 8 12 218
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 220 |
1 2 6 18 19 20 3 4 5
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 221 |
7 8 14 220
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 222 |
219 221
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑥 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ( .r ‘ 𝑄 ) ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑦 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
| 223 |
217 222
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ) |
| 224 |
223
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝑇 ‘ 𝑦 ) ) ) |