Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpmhm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pm2mpmhm.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pm2mpmhm.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
pm2mpmhm.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
5 |
|
pm2mpmhm.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
6 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
7 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
8 |
4
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑄 ) = ( ·𝑠 ‘ 𝑄 ) |
12 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
13 |
|
eqid |
⊢ ( var1 ‘ 𝐴 ) = ( var1 ‘ 𝐴 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
15 |
1 2 10 11 12 13 3 4 14 5
|
pm2mpghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ) |
16 |
1 2 3 4 5
|
pm2mpmhm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) ) |
17 |
15 16
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ∧ 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) ) ) |
18 |
|
eqid |
⊢ ( mulGrp ‘ 𝐶 ) = ( mulGrp ‘ 𝐶 ) |
19 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
20 |
18 19
|
isrhm |
⊢ ( 𝑇 ∈ ( 𝐶 RingHom 𝑄 ) ↔ ( ( 𝐶 ∈ Ring ∧ 𝑄 ∈ Ring ) ∧ ( 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ∧ 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) ) ) ) |
21 |
6 9 17 20
|
syl21anbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 RingHom 𝑄 ) ) |