Metamath Proof Explorer


Theorem pm2mprhm

Description: The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses pm2mpmhm.p 𝑃 = ( Poly1𝑅 )
pm2mpmhm.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpmhm.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpmhm.q 𝑄 = ( Poly1𝐴 )
pm2mpmhm.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
Assertion pm2mprhm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 RingHom 𝑄 ) )

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p 𝑃 = ( Poly1𝑅 )
2 pm2mpmhm.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpmhm.a 𝐴 = ( 𝑁 Mat 𝑅 )
4 pm2mpmhm.q 𝑄 = ( Poly1𝐴 )
5 pm2mpmhm.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
6 1 2 pmatring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring )
7 3 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
8 4 ply1ring ( 𝐴 ∈ Ring → 𝑄 ∈ Ring )
9 7 8 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring )
10 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
11 eqid ( ·𝑠𝑄 ) = ( ·𝑠𝑄 )
12 eqid ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
13 eqid ( var1𝐴 ) = ( var1𝐴 )
14 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
15 1 2 10 11 12 13 3 4 14 5 pm2mpghm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) )
16 1 2 3 4 5 pm2mpmhm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) )
17 15 16 jca ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ∧ 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) ) )
18 eqid ( mulGrp ‘ 𝐶 ) = ( mulGrp ‘ 𝐶 )
19 eqid ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 )
20 18 19 isrhm ( 𝑇 ∈ ( 𝐶 RingHom 𝑄 ) ↔ ( ( 𝐶 ∈ Ring ∧ 𝑄 ∈ Ring ) ∧ ( 𝑇 ∈ ( 𝐶 GrpHom 𝑄 ) ∧ 𝑇 ∈ ( ( mulGrp ‘ 𝐶 ) MndHom ( mulGrp ‘ 𝑄 ) ) ) ) )
21 6 9 17 20 syl21anbrc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐶 RingHom 𝑄 ) )