Metamath Proof Explorer


Theorem pm3.22

Description: Theorem *3.22 of WhiteheadRussell p. 111. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 13-Nov-2012)

Ref Expression
Assertion pm3.22 ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜓𝜑 ) → ( 𝜓𝜑 ) )
2 1 ancoms ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )