Description: Theorem *3.37 (Transp) of WhiteheadRussell p. 112. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 23-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm3.37 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.14 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ 𝜓 ) ) | |
2 | 1 | biimpi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ 𝜓 ) ) |