Metamath Proof Explorer


Theorem pm3.43

Description: Theorem *3.43 (Comp) of WhiteheadRussell p. 113. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm3.43 ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 pm3.43i ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) → ( 𝜑 → ( 𝜓𝜒 ) ) ) )
2 1 imp ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) )