Metamath Proof Explorer


Theorem pm3.44

Description: Theorem *3.44 of WhiteheadRussell p. 113. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 3-Oct-2013)

Ref Expression
Assertion pm3.44 ( ( ( 𝜓𝜑 ) ∧ ( 𝜒𝜑 ) ) → ( ( 𝜓𝜒 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜓𝜑 ) → ( 𝜓𝜑 ) )
2 id ( ( 𝜒𝜑 ) → ( 𝜒𝜑 ) )
3 1 2 jaao ( ( ( 𝜓𝜑 ) ∧ ( 𝜒𝜑 ) ) → ( ( 𝜓𝜒 ) → 𝜑 ) )