Description: Theorem *3.44 of WhiteheadRussell p. 113. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 3-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm3.44 | ⊢ ( ( ( 𝜓 → 𝜑 ) ∧ ( 𝜒 → 𝜑 ) ) → ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜑 ) ) | |
2 | id | ⊢ ( ( 𝜒 → 𝜑 ) → ( 𝜒 → 𝜑 ) ) | |
3 | 1 2 | jaao | ⊢ ( ( ( 𝜓 → 𝜑 ) ∧ ( 𝜒 → 𝜑 ) ) → ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) |