Description: Theorem *3.48 of WhiteheadRussell p. 114. (Contributed by NM, 28-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | pm3.48 | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜓 ∨ 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | ⊢ ( 𝜓 → ( 𝜓 ∨ 𝜃 ) ) | |
2 | 1 | imim2i | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ( 𝜓 ∨ 𝜃 ) ) ) |
3 | olc | ⊢ ( 𝜃 → ( 𝜓 ∨ 𝜃 ) ) | |
4 | 3 | imim2i | ⊢ ( ( 𝜒 → 𝜃 ) → ( 𝜒 → ( 𝜓 ∨ 𝜃 ) ) ) |
5 | 2 4 | jaao | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜓 ∨ 𝜃 ) ) ) |