Metamath Proof Explorer


Theorem pm3.48

Description: Theorem *3.48 of WhiteheadRussell p. 114. (Contributed by NM, 28-Jan-1997)

Ref Expression
Assertion pm3.48 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) → ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 orc ( 𝜓 → ( 𝜓𝜃 ) )
2 1 imim2i ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜓𝜃 ) ) )
3 olc ( 𝜃 → ( 𝜓𝜃 ) )
4 3 imim2i ( ( 𝜒𝜃 ) → ( 𝜒 → ( 𝜓𝜃 ) ) )
5 2 4 jaao ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) → ( 𝜓𝜃 ) ) )