Metamath Proof Explorer


Theorem pm4.43

Description: Theorem *4.43 of WhiteheadRussell p. 119. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 26-Nov-2012)

Ref Expression
Assertion pm4.43 ( 𝜑 ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑 ∨ ¬ 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 pm3.24 ¬ ( 𝜓 ∧ ¬ 𝜓 )
2 1 biorfi ( 𝜑 ↔ ( 𝜑 ∨ ( 𝜓 ∧ ¬ 𝜓 ) ) )
3 ordi ( ( 𝜑 ∨ ( 𝜓 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑 ∨ ¬ 𝜓 ) ) )
4 2 3 bitri ( 𝜑 ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑 ∨ ¬ 𝜓 ) ) )