Metamath Proof Explorer


Theorem pm4.44

Description: Theorem *4.44 of WhiteheadRussell p. 119. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.44 ( 𝜑 ↔ ( 𝜑 ∨ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 orc ( 𝜑 → ( 𝜑 ∨ ( 𝜑𝜓 ) ) )
2 id ( 𝜑𝜑 )
3 simpl ( ( 𝜑𝜓 ) → 𝜑 )
4 2 3 jaoi ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) → 𝜑 )
5 1 4 impbii ( 𝜑 ↔ ( 𝜑 ∨ ( 𝜑𝜓 ) ) )