Metamath Proof Explorer


Theorem pm4.45

Description: Theorem *4.45 of WhiteheadRussell p. 119. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.45 ( 𝜑 ↔ ( 𝜑 ∧ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 orc ( 𝜑 → ( 𝜑𝜓 ) )
2 1 pm4.71i ( 𝜑 ↔ ( 𝜑 ∧ ( 𝜑𝜓 ) ) )