Description: Theorem *4.54 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.54 | ⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) ↔ ¬ ( 𝜑 ∨ ¬ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an | ⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) ↔ ¬ ( ¬ 𝜑 → ¬ 𝜓 ) ) | |
2 | pm4.66 | ⊢ ( ( ¬ 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) ) | |
3 | 1 2 | xchbinx | ⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) ↔ ¬ ( 𝜑 ∨ ¬ 𝜓 ) ) |