Metamath Proof Explorer


Theorem pm4.54

Description: Theorem *4.54 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Nov-2012)

Ref Expression
Assertion pm4.54 ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( 𝜑 ∨ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-an ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( ¬ 𝜑 → ¬ 𝜓 ) )
2 pm4.66 ( ( ¬ 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) )
3 1 2 xchbinx ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( 𝜑 ∨ ¬ 𝜓 ) )