Metamath Proof Explorer


Theorem pm4.55

Description: Theorem *4.55 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.55 ( ¬ ( ¬ 𝜑𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm4.54 ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( 𝜑 ∨ ¬ 𝜓 ) )
2 1 con2bii ( ( 𝜑 ∨ ¬ 𝜓 ) ↔ ¬ ( ¬ 𝜑𝜓 ) )
3 2 bicomi ( ¬ ( ¬ 𝜑𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) )