Description: Theorem *4.55 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.55 | ⊢ ( ¬ ( ¬ 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.54 | ⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) ↔ ¬ ( 𝜑 ∨ ¬ 𝜓 ) ) | |
2 | 1 | con2bii | ⊢ ( ( 𝜑 ∨ ¬ 𝜓 ) ↔ ¬ ( ¬ 𝜑 ∧ 𝜓 ) ) |
3 | 2 | bicomi | ⊢ ( ¬ ( ¬ 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) ) |