Metamath Proof Explorer


Theorem pm4.61

Description: Theorem *4.61 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.61 ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 annim ( ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
2 1 bicomi ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) )