Metamath Proof Explorer


Theorem pm4.62

Description: Theorem *4.62 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.62 ( ( 𝜑 → ¬ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 imor ( ( 𝜑 → ¬ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )