Metamath Proof Explorer


Theorem pm4.71r

Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of WhiteheadRussell p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999)

Ref Expression
Assertion pm4.71r ( ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71 ( ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ( 𝜑𝜓 ) ) )
2 ancom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
3 2 bibi2i ( ( 𝜑 ↔ ( 𝜑𝜓 ) ) ↔ ( 𝜑 ↔ ( 𝜓𝜑 ) ) )
4 1 3 bitri ( ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ( 𝜓𝜑 ) ) )