Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of WhiteheadRussell p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.71r | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
2 | ancom | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜓 ∧ 𝜑 ) ) | |
3 | 2 | bibi2i | ⊢ ( ( 𝜑 ↔ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜑 ) ) ) |
4 | 1 3 | bitri | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 ↔ ( 𝜓 ∧ 𝜑 ) ) ) |