Metamath Proof Explorer


Theorem pm4.77

Description: Theorem *4.77 of WhiteheadRussell p. 121. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.77 ( ( ( 𝜓𝜑 ) ∧ ( 𝜒𝜑 ) ) ↔ ( ( 𝜓𝜒 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 jaob ( ( ( 𝜓𝜒 ) → 𝜑 ) ↔ ( ( 𝜓𝜑 ) ∧ ( 𝜒𝜑 ) ) )
2 1 bicomi ( ( ( 𝜓𝜑 ) ∧ ( 𝜒𝜑 ) ) ↔ ( ( 𝜓𝜒 ) → 𝜑 ) )