Metamath Proof Explorer


Theorem pm4.79

Description: Theorem *4.79 of WhiteheadRussell p. 121. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 27-Jun-2013)

Ref Expression
Assertion pm4.79 ( ( ( 𝜓𝜑 ) ∨ ( 𝜒𝜑 ) ) ↔ ( ( 𝜓𝜒 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜓𝜑 ) → ( 𝜓𝜑 ) )
2 id ( ( 𝜒𝜑 ) → ( 𝜒𝜑 ) )
3 1 2 jaoa ( ( ( 𝜓𝜑 ) ∨ ( 𝜒𝜑 ) ) → ( ( 𝜓𝜒 ) → 𝜑 ) )
4 simplim ( ¬ ( 𝜓𝜑 ) → 𝜓 )
5 pm3.3 ( ( ( 𝜓𝜒 ) → 𝜑 ) → ( 𝜓 → ( 𝜒𝜑 ) ) )
6 4 5 syl5 ( ( ( 𝜓𝜒 ) → 𝜑 ) → ( ¬ ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) )
7 6 orrd ( ( ( 𝜓𝜒 ) → 𝜑 ) → ( ( 𝜓𝜑 ) ∨ ( 𝜒𝜑 ) ) )
8 3 7 impbii ( ( ( 𝜓𝜑 ) ∨ ( 𝜒𝜑 ) ) ↔ ( ( 𝜓𝜒 ) → 𝜑 ) )