Description: Theorem *4.79 of WhiteheadRussell p. 121. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 27-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.79 | ⊢ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜑 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) → 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜑 ) ) | |
2 | id | ⊢ ( ( 𝜒 → 𝜑 ) → ( 𝜒 → 𝜑 ) ) | |
3 | 1 2 | jaoa | ⊢ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜑 ) ) → ( ( 𝜓 ∧ 𝜒 ) → 𝜑 ) ) |
4 | simplim | ⊢ ( ¬ ( 𝜓 → 𝜑 ) → 𝜓 ) | |
5 | pm3.3 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) → 𝜑 ) → ( 𝜓 → ( 𝜒 → 𝜑 ) ) ) | |
6 | 4 5 | syl5 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) → 𝜑 ) → ( ¬ ( 𝜓 → 𝜑 ) → ( 𝜒 → 𝜑 ) ) ) |
7 | 6 | orrd | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) → 𝜑 ) → ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜑 ) ) ) |
8 | 3 7 | impbii | ⊢ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜑 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) → 𝜑 ) ) |