Description: Theorem *4.82 of WhiteheadRussell p. 122. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.82 | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ¬ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 → ¬ 𝜓 ) → ¬ 𝜑 ) ) | |
2 | 1 | imp | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) → ¬ 𝜑 ) |
3 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) | |
4 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → ¬ 𝜓 ) ) | |
5 | 3 4 | jca | ⊢ ( ¬ 𝜑 → ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ) |
6 | 2 5 | impbii | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ¬ 𝜑 ) |