Metamath Proof Explorer


Theorem pm4.83

Description: Theorem *4.83 of WhiteheadRussell p. 122. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.83 ( ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜓 ) ) ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 exmid ( 𝜑 ∨ ¬ 𝜑 )
2 1 a1bi ( 𝜓 ↔ ( ( 𝜑 ∨ ¬ 𝜑 ) → 𝜓 ) )
3 jaob ( ( ( 𝜑 ∨ ¬ 𝜑 ) → 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜓 ) ) )
4 2 3 bitr2i ( ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑𝜓 ) ) ↔ 𝜓 )