Metamath Proof Explorer


Theorem pm5.12

Description: Theorem *5.12 of WhiteheadRussell p. 123. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.12 ( ( 𝜑𝜓 ) ∨ ( 𝜑 → ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.51 ( ¬ ( 𝜑𝜓 ) → ( 𝜑 → ¬ 𝜓 ) )
2 1 orri ( ( 𝜑𝜓 ) ∨ ( 𝜑 → ¬ 𝜓 ) )