Description: Theorem *5.15 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 15-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.15 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ∨ ( 𝜑 ↔ ¬ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor3 | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) ) | |
2 | 1 | biimpi | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) → ( 𝜑 ↔ ¬ 𝜓 ) ) |
3 | 2 | orri | ⊢ ( ( 𝜑 ↔ 𝜓 ) ∨ ( 𝜑 ↔ ¬ 𝜓 ) ) |