Metamath Proof Explorer


Theorem pm5.15

Description: Theorem *5.15 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 15-Oct-2013)

Ref Expression
Assertion pm5.15 ( ( 𝜑𝜓 ) ∨ ( 𝜑 ↔ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 xor3 ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) )
2 1 biimpi ( ¬ ( 𝜑𝜓 ) → ( 𝜑 ↔ ¬ 𝜓 ) )
3 2 orri ( ( 𝜑𝜓 ) ∨ ( 𝜑 ↔ ¬ 𝜓 ) )