Description: Theorem *5.16 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 17-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.16 | ⊢ ¬ ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜑 ↔ ¬ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.18 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( 𝜑 ↔ ¬ 𝜓 ) ) | |
2 | 1 | biimpi | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ¬ ( 𝜑 ↔ ¬ 𝜓 ) ) |
3 | imnan | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( 𝜑 ↔ ¬ 𝜓 ) ) ↔ ¬ ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜑 ↔ ¬ 𝜓 ) ) ) | |
4 | 2 3 | mpbi | ⊢ ¬ ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜑 ↔ ¬ 𝜓 ) ) |