Metamath Proof Explorer


Theorem pm5.16

Description: Theorem *5.16 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 17-Oct-2013)

Ref Expression
Assertion pm5.16 ¬ ( ( 𝜑𝜓 ) ∧ ( 𝜑 ↔ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm5.18 ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑 ↔ ¬ 𝜓 ) )
2 1 biimpi ( ( 𝜑𝜓 ) → ¬ ( 𝜑 ↔ ¬ 𝜓 ) )
3 imnan ( ( ( 𝜑𝜓 ) → ¬ ( 𝜑 ↔ ¬ 𝜓 ) ) ↔ ¬ ( ( 𝜑𝜓 ) ∧ ( 𝜑 ↔ ¬ 𝜓 ) ) )
4 2 3 mpbi ¬ ( ( 𝜑𝜓 ) ∧ ( 𝜑 ↔ ¬ 𝜓 ) )