Description: Theorem *5.17 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 3-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.17 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom | ⊢ ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( ¬ 𝜓 ↔ 𝜑 ) ) | |
2 | dfbi2 | ⊢ ( ( ¬ 𝜓 ↔ 𝜑 ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ) | |
3 | orcom | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜓 ∨ 𝜑 ) ) | |
4 | df-or | ⊢ ( ( 𝜓 ∨ 𝜑 ) ↔ ( ¬ 𝜓 → 𝜑 ) ) | |
5 | 3 4 | bitr2i | ⊢ ( ( ¬ 𝜓 → 𝜑 ) ↔ ( 𝜑 ∨ 𝜓 ) ) |
6 | imnan | ⊢ ( ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) | |
7 | 5 6 | anbi12i | ⊢ ( ( ( ¬ 𝜓 → 𝜑 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) |
8 | 1 2 7 | 3bitrri | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) ) |