Metamath Proof Explorer


Theorem pm5.17

Description: Theorem *5.17 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 3-Jan-2013)

Ref Expression
Assertion pm5.17 ( ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bicom ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( ¬ 𝜓𝜑 ) )
2 dfbi2 ( ( ¬ 𝜓𝜑 ) ↔ ( ( ¬ 𝜓𝜑 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) )
3 orcom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
4 df-or ( ( 𝜓𝜑 ) ↔ ( ¬ 𝜓𝜑 ) )
5 3 4 bitr2i ( ( ¬ 𝜓𝜑 ) ↔ ( 𝜑𝜓 ) )
6 imnan ( ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
7 5 6 anbi12i ( ( ( ¬ 𝜓𝜑 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) )
8 1 2 7 3bitrri ( ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) )