Metamath Proof Explorer


Theorem pm5.19

Description: Theorem *5.19 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.19 ¬ ( 𝜑 ↔ ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 biid ( 𝜑𝜑 )
2 pm5.18 ( ( 𝜑𝜑 ) ↔ ¬ ( 𝜑 ↔ ¬ 𝜑 ) )
3 1 2 mpbi ¬ ( 𝜑 ↔ ¬ 𝜑 )