Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical conjunction
pm5.21nd
Metamath Proof Explorer
Description: Eliminate an antecedent implied by each side of a biconditional.
Variant of pm5.21ndd . (Contributed by NM , 20-Nov-2005) (Proof
shortened by Wolf Lammen , 4-Nov-2013)
Ref
Expression
Hypotheses
pm5.21nd.1
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 )
pm5.21nd.2
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 )
pm5.21nd.3
⊢ ( 𝜃 → ( 𝜓 ↔ 𝜒 ) )
Assertion
pm5.21nd
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
pm5.21nd.1
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 )
2
pm5.21nd.2
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 )
3
pm5.21nd.3
⊢ ( 𝜃 → ( 𝜓 ↔ 𝜒 ) )
4
1
ex
⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) )
5
2
ex
⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) )
6
3
a1i
⊢ ( 𝜑 → ( 𝜃 → ( 𝜓 ↔ 𝜒 ) ) )
7
4 5 6
pm5.21ndd
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) )