Metamath Proof Explorer


Theorem pm5.24

Description: Theorem *5.24 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.24 ( ¬ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 xor ( ¬ ( 𝜑𝜓 ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) )
2 dfbi3 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) )
3 1 2 xchnxbi ( ¬ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) )