Metamath Proof Explorer


Theorem pm5.32

Description: Distribution of implication over biconditional. Theorem *5.32 of WhiteheadRussell p. 125. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion pm5.32 ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 notbi ( ( 𝜓𝜒 ) ↔ ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
2 1 imbi2i ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) )
3 pm5.74 ( ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 → ¬ 𝜒 ) ) )
4 notbi ( ( ( 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 → ¬ 𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) )
5 2 3 4 3bitri ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) )
6 df-an ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜓 ) )
7 df-an ( ( 𝜑𝜒 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) )
8 6 7 bibi12i ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) )
9 5 8 bitr4i ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )