Step |
Hyp |
Ref |
Expression |
1 |
|
notbi |
⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
2 |
1
|
imbi2i |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) ) |
3 |
|
pm5.74 |
⊢ ( ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 → ¬ 𝜒 ) ) ) |
4 |
|
notbi |
⊢ ( ( ( 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 → ¬ 𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) ) |
5 |
2 3 4
|
3bitri |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) ) |
6 |
|
df-an |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜓 ) ) |
7 |
|
df-an |
⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) |
8 |
6 7
|
bibi12i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) ) |
9 |
5 8
|
bitr4i |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) ) |