Description: Theorem *5.33 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.33 | ⊢ ( ( 𝜑 ∧ ( 𝜓 → 𝜒 ) ) ↔ ( 𝜑 ∧ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
2 | 1 | imbi1d | ⊢ ( 𝜑 → ( ( 𝜓 → 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ) ) |
3 | 2 | pm5.32i | ⊢ ( ( 𝜑 ∧ ( 𝜓 → 𝜒 ) ) ↔ ( 𝜑 ∧ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ) ) |