Metamath Proof Explorer


Theorem pm5.33

Description: Theorem *5.33 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.33 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜑 ∧ ( ( 𝜑𝜓 ) → 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ibar ( 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
2 1 imbi1d ( 𝜑 → ( ( 𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) → 𝜒 ) ) )
3 2 pm5.32i ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜑 ∧ ( ( 𝜑𝜓 ) → 𝜒 ) ) )