Metamath Proof Explorer


Theorem pm5.42

Description: Theorem *5.42 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.42 ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜑𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 ibar ( 𝜑 → ( 𝜒 ↔ ( 𝜑𝜒 ) ) )
2 1 imbi2d ( 𝜑 → ( ( 𝜓𝜒 ) ↔ ( 𝜓 → ( 𝜑𝜒 ) ) ) )
3 2 pm5.74i ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜑 → ( 𝜓 → ( 𝜑𝜒 ) ) ) )