Description: Theorem *5.53 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.53 | ⊢ ( ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑 → 𝜃 ) ∧ ( 𝜓 → 𝜃 ) ) ∧ ( 𝜒 → 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaob | ⊢ ( ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) → 𝜃 ) ∧ ( 𝜒 → 𝜃 ) ) ) | |
2 | jaob | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → 𝜃 ) ↔ ( ( 𝜑 → 𝜃 ) ∧ ( 𝜓 → 𝜃 ) ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ( ( 𝜑 ∨ 𝜓 ) → 𝜃 ) ∧ ( 𝜒 → 𝜃 ) ) ↔ ( ( ( 𝜑 → 𝜃 ) ∧ ( 𝜓 → 𝜃 ) ) ∧ ( 𝜒 → 𝜃 ) ) ) |
4 | 1 3 | bitri | ⊢ ( ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑 → 𝜃 ) ∧ ( 𝜓 → 𝜃 ) ) ∧ ( 𝜒 → 𝜃 ) ) ) |