Metamath Proof Explorer


Theorem pm5.53

Description: Theorem *5.53 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.53 ( ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜃 ) ) ∧ ( 𝜒𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 jaob ( ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑𝜓 ) → 𝜃 ) ∧ ( 𝜒𝜃 ) ) )
2 jaob ( ( ( 𝜑𝜓 ) → 𝜃 ) ↔ ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜃 ) ) )
3 2 anbi1i ( ( ( ( 𝜑𝜓 ) → 𝜃 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜃 ) ) ∧ ( 𝜒𝜃 ) ) )
4 1 3 bitri ( ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → 𝜃 ) ↔ ( ( ( 𝜑𝜃 ) ∧ ( 𝜓𝜃 ) ) ∧ ( 𝜒𝜃 ) ) )