Description: Theorem *5.54 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 7-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.54 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba | ⊢ ( 𝜓 → ( 𝜑 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
2 | 1 | bicomd | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) ) |
3 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) ) |
4 | 3 2 | pm5.21ni | ⊢ ( ¬ ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜓 ) ) |
5 | 4 | orri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜓 ) ) |