Metamath Proof Explorer


Theorem pm5.54

Description: Theorem *5.54 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 7-Nov-2013)

Ref Expression
Assertion pm5.54 ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑𝜓 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 iba ( 𝜓 → ( 𝜑 ↔ ( 𝜑𝜓 ) ) )
2 1 bicomd ( 𝜓 → ( ( 𝜑𝜓 ) ↔ 𝜑 ) )
3 2 adantl ( ( 𝜑𝜓 ) → ( ( 𝜑𝜓 ) ↔ 𝜑 ) )
4 3 2 pm5.21ni ( ¬ ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( ( 𝜑𝜓 ) ↔ 𝜓 ) )
5 4 orri ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑𝜓 ) ↔ 𝜓 ) )