Description: Theorem *5.55 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 20-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.55 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biort | ⊢ ( 𝜑 → ( 𝜑 ↔ ( 𝜑 ∨ 𝜓 ) ) ) | |
2 | 1 | bicomd | ⊢ ( 𝜑 → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) ) |
3 | biorf | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) | |
4 | 3 | bicomd | ⊢ ( ¬ 𝜑 → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |
5 | 2 4 | nsyl5 | ⊢ ( ¬ ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |
6 | 5 | orri | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |