Metamath Proof Explorer


Theorem pm5.6

Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of WhiteheadRussell p. 125. (Contributed by NM, 8-Jun-1994)

Ref Expression
Assertion pm5.6 ( ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 impexp ( ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( ¬ 𝜓𝜒 ) ) )
2 df-or ( ( 𝜓𝜒 ) ↔ ( ¬ 𝜓𝜒 ) )
3 2 imbi2i ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( 𝜑 → ( ¬ 𝜓𝜒 ) ) )
4 1 3 bitr4i ( ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )