Metamath Proof Explorer


Theorem pm5.61

Description: Theorem *5.61 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 30-Jun-2013)

Ref Expression
Assertion pm5.61 ( ( ( 𝜑𝜓 ) ∧ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 orel2 ( ¬ 𝜓 → ( ( 𝜑𝜓 ) → 𝜑 ) )
2 orc ( 𝜑 → ( 𝜑𝜓 ) )
3 1 2 impbid1 ( ¬ 𝜓 → ( ( 𝜑𝜓 ) ↔ 𝜑 ) )
4 3 pm5.32ri ( ( ( 𝜑𝜓 ) ∧ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) )