Metamath Proof Explorer


Theorem pm5.62

Description: Theorem *5.62 of WhiteheadRussell p. 125. (Contributed by Roy F. Longton, 21-Jun-2005)

Ref Expression
Assertion pm5.62 ( ( ( 𝜑𝜓 ) ∨ ¬ 𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exmid ( 𝜓 ∨ ¬ 𝜓 )
2 ordir ( ( ( 𝜑𝜓 ) ∨ ¬ 𝜓 ) ↔ ( ( 𝜑 ∨ ¬ 𝜓 ) ∧ ( 𝜓 ∨ ¬ 𝜓 ) ) )
3 1 2 mpbiran2 ( ( ( 𝜑𝜓 ) ∨ ¬ 𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) )