Metamath Proof Explorer


Theorem pm5.63

Description: Theorem *5.63 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 25-Dec-2012)

Ref Expression
Assertion pm5.63 ( ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ( ¬ 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 exmid ( 𝜑 ∨ ¬ 𝜑 )
2 ordi ( ( 𝜑 ∨ ( ¬ 𝜑𝜓 ) ) ↔ ( ( 𝜑 ∨ ¬ 𝜑 ) ∧ ( 𝜑𝜓 ) ) )
3 1 2 mpbiran ( ( 𝜑 ∨ ( ¬ 𝜑𝜓 ) ) ↔ ( 𝜑𝜓 ) )
4 3 bicomi ( ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ( ¬ 𝜑𝜓 ) ) )