Description: Disjunction distributes over the biconditional. Theorem *5.7 of WhiteheadRussell p. 125. This theorem is similar to orbidi . (Contributed by Roy F. Longton, 21-Jun-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.7 | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) ↔ ( 𝜓 ∨ 𝜒 ) ) ↔ ( 𝜒 ∨ ( 𝜑 ↔ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbidi | ⊢ ( ( 𝜒 ∨ ( 𝜑 ↔ 𝜓 ) ) ↔ ( ( 𝜒 ∨ 𝜑 ) ↔ ( 𝜒 ∨ 𝜓 ) ) ) | |
2 | orcom | ⊢ ( ( 𝜒 ∨ 𝜑 ) ↔ ( 𝜑 ∨ 𝜒 ) ) | |
3 | orcom | ⊢ ( ( 𝜒 ∨ 𝜓 ) ↔ ( 𝜓 ∨ 𝜒 ) ) | |
4 | 2 3 | bibi12i | ⊢ ( ( ( 𝜒 ∨ 𝜑 ) ↔ ( 𝜒 ∨ 𝜓 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ) ↔ ( 𝜓 ∨ 𝜒 ) ) ) |
5 | 1 4 | bitr2i | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) ↔ ( 𝜓 ∨ 𝜒 ) ) ↔ ( 𝜒 ∨ ( 𝜑 ↔ 𝜓 ) ) ) |