Metamath Proof Explorer


Theorem pm5.74

Description: Distribution of implication over biconditional. Theorem *5.74 of WhiteheadRussell p. 126. (Contributed by NM, 1-Aug-1994) (Proof shortened by Wolf Lammen, 11-Apr-2013)

Ref Expression
Assertion pm5.74 ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 biimp ( ( 𝜓𝜒 ) → ( 𝜓𝜒 ) )
2 1 imim3i ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
3 biimpr ( ( 𝜓𝜒 ) → ( 𝜒𝜓 ) )
4 3 imim3i ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜒 ) → ( 𝜑𝜓 ) ) )
5 2 4 impbid ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )
6 biimp ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
7 6 pm2.86d ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) )
8 biimpr ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) → ( ( 𝜑𝜒 ) → ( 𝜑𝜓 ) ) )
9 8 pm2.86d ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) → ( 𝜑 → ( 𝜒𝜓 ) ) )
10 7 9 impbidd ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) → ( 𝜑 → ( 𝜓𝜒 ) ) )
11 5 10 impbii ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜒 ) ) )