Step |
Hyp |
Ref |
Expression |
1 |
|
biimp |
⊢ ( ( 𝜓 ↔ 𝜒 ) → ( 𝜓 → 𝜒 ) ) |
2 |
1
|
imim3i |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
3 |
|
biimpr |
⊢ ( ( 𝜓 ↔ 𝜒 ) → ( 𝜒 → 𝜓 ) ) |
4 |
3
|
imim3i |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ( 𝜑 → 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) |
5 |
2 4
|
impbid |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
6 |
|
biimp |
⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
7 |
6
|
pm2.86d |
⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
8 |
|
biimpr |
⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) |
9 |
8
|
pm2.86d |
⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜒 → 𝜓 ) ) ) |
10 |
7 9
|
impbidd |
⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
11 |
5 10
|
impbii |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |