Step |
Hyp |
Ref |
Expression |
1 |
|
carden2b |
⊢ ( 𝐴 ≈ 1o → ( card ‘ 𝐴 ) = ( card ‘ 1o ) ) |
2 |
|
1onn |
⊢ 1o ∈ ω |
3 |
|
cardnn |
⊢ ( 1o ∈ ω → ( card ‘ 1o ) = 1o ) |
4 |
2 3
|
ax-mp |
⊢ ( card ‘ 1o ) = 1o |
5 |
1 4
|
eqtrdi |
⊢ ( 𝐴 ≈ 1o → ( card ‘ 𝐴 ) = 1o ) |
6 |
4
|
eqeq2i |
⊢ ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) ↔ ( card ‘ 𝐴 ) = 1o ) |
7 |
6
|
biimpri |
⊢ ( ( card ‘ 𝐴 ) = 1o → ( card ‘ 𝐴 ) = ( card ‘ 1o ) ) |
8 |
|
1n0 |
⊢ 1o ≠ ∅ |
9 |
8
|
neii |
⊢ ¬ 1o = ∅ |
10 |
|
eqeq1 |
⊢ ( ( card ‘ 𝐴 ) = 1o → ( ( card ‘ 𝐴 ) = ∅ ↔ 1o = ∅ ) ) |
11 |
9 10
|
mtbiri |
⊢ ( ( card ‘ 𝐴 ) = 1o → ¬ ( card ‘ 𝐴 ) = ∅ ) |
12 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom card → ( card ‘ 𝐴 ) = ∅ ) |
13 |
11 12
|
nsyl2 |
⊢ ( ( card ‘ 𝐴 ) = 1o → 𝐴 ∈ dom card ) |
14 |
|
1on |
⊢ 1o ∈ On |
15 |
|
onenon |
⊢ ( 1o ∈ On → 1o ∈ dom card ) |
16 |
14 15
|
ax-mp |
⊢ 1o ∈ dom card |
17 |
|
carden2 |
⊢ ( ( 𝐴 ∈ dom card ∧ 1o ∈ dom card ) → ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) ↔ 𝐴 ≈ 1o ) ) |
18 |
13 16 17
|
sylancl |
⊢ ( ( card ‘ 𝐴 ) = 1o → ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) ↔ 𝐴 ≈ 1o ) ) |
19 |
7 18
|
mpbid |
⊢ ( ( card ‘ 𝐴 ) = 1o → 𝐴 ≈ 1o ) |
20 |
5 19
|
impbii |
⊢ ( 𝐴 ≈ 1o ↔ ( card ‘ 𝐴 ) = 1o ) |
21 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝐴 → ( ( card ‘ 𝑥 ) = 1o ↔ ( card ‘ 𝐴 ) = 1o ) ) |
22 |
13 21
|
elab3 |
⊢ ( 𝐴 ∈ { 𝑥 ∣ ( card ‘ 𝑥 ) = 1o } ↔ ( card ‘ 𝐴 ) = 1o ) |
23 |
20 22
|
bitr4i |
⊢ ( 𝐴 ≈ 1o ↔ 𝐴 ∈ { 𝑥 ∣ ( card ‘ 𝑥 ) = 1o } ) |