Step |
Hyp |
Ref |
Expression |
1 |
|
pmap1.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
2 |
|
pmap1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
pmap1.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
5 |
4 1
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) ) |
6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
7 |
4 6 2 3
|
pmapval |
⊢ ( ( 𝐾 ∈ OP ∧ 1 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ 1 ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 1 } ) |
8 |
5 7
|
mpdan |
⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ 1 ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 1 } ) |
9 |
4 2
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
10 |
4 6 1
|
ople1 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → 𝑝 ( le ‘ 𝐾 ) 1 ) |
11 |
9 10
|
sylan2 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ( le ‘ 𝐾 ) 1 ) |
12 |
11
|
ralrimiva |
⊢ ( 𝐾 ∈ OP → ∀ 𝑝 ∈ 𝐴 𝑝 ( le ‘ 𝐾 ) 1 ) |
13 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 1 } ↔ ∀ 𝑝 ∈ 𝐴 𝑝 ( le ‘ 𝐾 ) 1 ) |
14 |
12 13
|
sylibr |
⊢ ( 𝐾 ∈ OP → 𝐴 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 1 } ) |
15 |
8 14
|
eqtr4d |
⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ 1 ) = 𝐴 ) |